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SYNTHESIS OF OSCILLATING

ADAPTIVE FEEDBACK SYSTEMS

Abstract--It has been known for many years that insertion

of certain types of nonlinear elements in the forward

loop of a feedback system will produce a limit cycle and

give the system the laudable property of zero sensitivity

to plant gain changes. Some such systems have been built

and tested, but no genuine synthesis theory has appeared.

In this paper a synthesis theory is developed which

allows system design to proceed from practical specifi-

cations on system command and/or disturbance response to

a design which is very nearly optimal in terms of feedback

sensor noise effects. The approach taken is to replace

the nonlinear element by *a mean square error minimizing

approximation (dual-input describing function), and then

use linear frequency domain synthesis techniques subject

to additional constraints imposed by the limit cycle and

the approximator. Synthesis techniques are also devel-

oped for a similar system using an externally excited

oscillating signal with the above approach.

The results, to a large extent, remove the design of

the systems considered from the realm of simulation and

experimentation, permitting true synthesis and the opti-

mization that accompanies it.
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CHAPTER I

PRELIMINARY BACKGROUND FOR OSCILLATING

SYSTEM DESIGN

1. 1 Introduction

The limit cycling or self-oscillating adaptive sys-

tem (SOAS) has appeared in the literature several times

[1-6]
over the preceding decade and before [  . Indeed one

version of an oscillating system [7 ] (externally excited

and somewhat different from those in this paper, but

with the same adaptive philosophy) was produced by

Minneapolis-Honeywell and successfully flight tested in

the F-94C aircraft in the role of pitch rate controller,

and separately in the role of pitch attitude controller.

An oscillating system was also used on the X-15

aircraft . The adaptive properties of oscillating sys-

tems have thus been proven to have useful practical appli-

cation. In fact, out of many adaptive schemes that have

been investigated, the oscillating system is one of few

that have been shown to have practical application to

systems where there is large plant parameter uncertainty

or variation. The primary attractiveness of oscillating

systems arises from their inherent zero sensitivity to

plant gain factor changes. Even so, as pointed out in

[6], a careful study must be made to determine whether,



in a given problem, a proposed oscillating system is

indeed superior to a purely linear system.

Noticably absent from the literature, however, are

specific synthesis techniques. Rather, the existing

theory has been presented on a largely qualitative basis

and actual hardware design entails much experimentation

and simulation. Synthesis techniques are needed that

permit the designer to proceed from a realistic set of

specifications through a step by step design procedure

which insures that these specifications are met, while

optimizing in some sense over the free parameters. In

addition, the designer should be able to see any trade-

offs involved in the synthesis steps, and to succinctly

determine what advantages his design has over other

possible designs, e.g., a linear design.

In this paper a systematic synthesis procedure is

presented. The criterion for optimization adopted is

to minimize the effect of output sensor noise at the

plant input (or the system output). Rather broad system

performance specifications are assumed, and from these

a design that is quite close to optimum is developed.

The systematic procedure for approaching this nearly

optimum design is given and at each step the designer has

a good "feel" for what his chosen degree of optimization

is costing in terms of system complexity.

In Chapter I we first consider the class of non-

linear elements that are suitable for oscillating systems,
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how these elements will be mathematically described in

synthesis, and the constraints imposed by this descrip-

tion. Next, a detailed statement of the synthesis

problem and the type of specifications to be satisfied

is given. Finally, the criterion for optimizing the

oscillating system design is discussed.

1.2 Description of the Nonlinear Element in an

Oscillating System

In the following, some basic properties of a class

of nonlinearities will be enumerated and the synthesis

theory of this paper will then apply to the class of non-

linear elements possessing these properties. The multi-

ple-input describing function is used for analysis. The

multiple-input describing function has been treated ra-

ther thoroughly and elegantly by Gelb and Vander Velde [9 ,

and the abbreviated derivation below follows that work

closely.

The nonlinearity in Fig. 1.1 has input x(t) com-

posed of three known signal types. We shall use in

place of the nonlinear element N a quasi-linear approxi-

mator for each of the signal components and require that

the approximators be such that the total mean squared

error
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E[e (t)] = E[(y(t) - y(t)) 2]

be minimized, By quasi-linear it is meant that for a

S(t)

o

Figure 1.1 Representation of nonlinear element
for derivation of multiple-input describing
function.

fixed input signal each of the hi (t) in Fig. 1.1 per-

form as a linear system to the particular signal type for
which it is derived, however, an hi may depend on some

parameters of its input signal type, e.g., magnitude,

and therefore is not truly linear. We shall consider

only time-invariant N and stationary inputs x(t) so

the resultant hi are thus time-invariant. Forming the

error, minimizing via the calculus of variations, and

requiring that the input signals be statistically inde-

pendent, the following decoupled set of equations in h.

x M
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is obtained

h.(t)R (t-T)dt = R (T) ; T > 0. (1.1)
o .. Y i

In this equation Rx. (T) is the autocorrelation for
1

input xi (t) and R (T) is the cross-correlation be-
y1i

tween nonlinearity output y(t) and input component

xi(t). Eq. 1.1 has identically the form of the Wiener-

Hopf integral of linear mean square filtering theory.

Letting x (t) = A sin(w t+O) where e is the

random variable distributed uniformly over [0,2w] radians

gives Rx (T) = A 2cos W T. Then0

2_ ho(t) cos [Wo(t-T)]dt =

2 0 0

A cosw oT E[y(O)sine] - Asinw o E[y(0)cosO]. Equating the

last expression to (1.2) for all T > 0 yields

F h (t)cosw tdt E[ (O)sin (1.3a)

RL E [y (0) cos]. (. 3b)

h (t)sin tdt = - ?E[y()cos]. (.3b)

These equations are satisfied by
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ho(t) = F{[y(O)sinO]6(t) + L E[y(0)cose]6(t , (1.4a)

or upon taking the Fourier transform

No = Ho(jo) = Ly()sin] + jE[y(O)cos] . (1.4b)

N is the describing function for th snusoidal compo-

nent of input at frequency & . If the total input

x(t) is taken to be a single sinusoid in computing No,

(1.4b) yields the more conventional describing function

obtained using harmonic analysis of y(t). The expres-

sion here is valid for the sinusoidal component at w
o

of any stationary, but otherwise arbitrary, input pro-

vided the sinusoidal component and the remainder of the

input are independent. If there are, for example, two

sinusoidal components at different frequencies w and

W1 the describing function for each may be obtained

from (1.4J) by two separate calculations. The two gains

thus obtained are known as the two sinusoid input de-

scribing function (TSIDF). No has quite simple form,

being a complex gain, but calculation of the expectations

in (l.4b) is not in general simple. It is shown in [9]

that No  is real for static and single-valued non-

linearities.

Taking xf(t) = b, a constant, gives Rx (T) = b 2

and R (T) = bE[y(t)] = bE[y(O)]. Thus using (1.1)
yxain

again



f h t) d r (a)f (1.5)

which is satisfied by

hf(t) - E[y(O)](h bM 6t(t) (1.6a)

and this represents a pure gain in the frequency domain,

viz.,

N f= E= 7 - _0)S (1.6)b)f b (1o6b)

The nonlinearity must have no constant output component

when there is no constant input (static nonlinearities

must be odd) in order that Nf be finite as b + 0.

This condition is always assumed in subsequent discussion.

If the input to N is restricted to be the sum of a

sinusoid plus a constant signal, the two gains N , Nf
are known as the dual-input describing function (DIDF).

For use in an oscillating system we shall require that

No = Mo/A (1.7a)

Nf = Mf/A (1.7b)

for A/Jbi > 1 by a sufficient margin, where M , Mf

do not depend on x(t). Actually, we require even more.

Instead of just a constant we shall allow xf(t) to be

some transient function of time, therefore not stationary,

and require it to be slow and small with respect to the



sinusoidal input in the following sense,

maxlx f(t) I < A1/a (1.8a)

Wb < 1 /8 , (1.8b)

where wb is the bandwidth of Xf(j) and A1 is the

minimum value that A can assume in the given applica-

tion. If for a given nonlinearity there exists a,B

such that when (1.8) holds, then (1.7) gives a suffi-

ciently good approximation to the DIDF with a,8,Mo, and

Mf dependent only on the physical parameters of the non-

linearity, i.e., independent of input provided the input

has the assumed form, then such a nonlinearity is a

candidate for use in an oscillating system. It will be

seen that (1.7) is necessary to obtain the zero gain

sensitivity property in oscillating systems. It is

stated in [10] that a > 3 and 8 > 3 give less than 5%

error in the approximations of (1.7) for an ideal relay

when xft) is a sinusoid and this reference indicates

these values hold closely for a wide range of common

nonlinearities. The error for any given nonlinearity

can be obtained by expanding the TSIDF, obtained from

(1.4b), and DIDF in Taylor series in b/A with b as

the bias magnitude or the magnitude of the lower fre-

quency sinusoid.

It may appear that by now we have restricted our-

selves to a nearly empty class of nonlinearities, but
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this is not the case. In order that (1.7a) hold it is

seen that N must have a saturating property, or for

large A the output sinusoidal component must approach

IM0 1 in magnitude, independent of A. In [11i it is

shown that for all odd, static, and single-valued non-

linearities, if the input is the sum of two sinusoids

x(t) = xf(t) + xo(t) = bcosw t + Acoswot with Wo/Wb

irrational then

A dN (A,0)
lim N (A,b) = No(A,O) + 2 dA (1.9)
b 0

The limit holds also for wb = 0, i.e., when xf(t) = b.

Of course dN o/dA must exist. The above limit has been

called the incremental input describing function (IIDF).

Applying this limit to the right side of (1.7a) we get

that Nf = N /2 = M /2A when xf is a sufficiently

small constant. Thus we can conclude that every odd,

saturating, static, and single-valued nonlinearity is in

the class of candidates for oscillating systems. In a

practical design situation one must of course determine

that (1.7) is a satisfactory approximation with accept-

able values of a and 8. We remark also that there

may be some lower bound set by the nonlinearity on A1

in (1.8a), e.g., for a saturation nonlinearity A1 must

be large enough to cause saturation. The above in no

way limits the possible nonlinearities that may prove

satisfactory for an oscillating system. Smisek[l61 has



1.0
studied a dynamic nonlinearity for which M is complex

with phase lead, and used this element in an SOAS simu-

lation. The above conditions, viz., nonlinearities that

are odd, saturating, static, single-valued, and such

that dN /dA is finite are theoretically sufficient for

(1.7) to hold for some a and 6, but they are not

necessary.

The IIDF has another useful application. Since it

holds for any Wb not rationally related to W it can be

used to predict stability of the forced signal loop

transmission for small perturbations. For large signal

stability the TSIDF can be used.

Next a random process input x r(t) to the nonlinear

element is considered. For this input R (T) =
yx

E[y(t)xr(t-T)] and Eq. 1.1 becomes

Sohr(t)R (t-T)dt = R (T); T > 0. (1.10)

For the general nonlinearity R (T) is quite difficultyxr

to obtain, and even if it were known the solution of

(1.10) is not apparent except in special cases, e.g., if

the Fourier transform of R yx(T) is known and rational,

the Wiener-Hopf type integral can be solved by spectral

factorization. However, as shown in [9], for the special

case of gaussian zero mean x (t) (if it is not zero

mean the constant component may be included in xf), and



for static single-valued nonlinearities only, R (T)yXr
2

Rx (T)E[y(0)xr (0)]/o . is the standard deviation of
r

the process amplitude distribution. In this case (1.10)

is seen to be satisfied by

h (t) = E[y(0)x r(0)1(t)/ 2  (1.lla)

and

N = E[v(0)x (0)/o 2 . (1.llb)r r

Thus the random input describing function (RIDF) com-

ponent is a pure gain under the stated conditions.

Finally it is shown in [91 that with input x(t) =

bcoswbt + Acoswot + x (t), an odd single-valued non-

linearity, and xr gaussian, that

lim N f(A,b,a) = N (A,0,a) . (1.12)
b+0 r

Eq. 1.12 holds when wb = 0 as well. This suggests that

for small inputs xf(t) the mean square error minimizing

quasi-linear approximator is a gain independent of the

waveshape of xf(t). It is found also that if in addi-

tion to (1.8)

a < A /a r  (1.13)

then

N r Mf/A . (1.14)
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More importantly, we want (1.7) to hold for forced

and oscillating signals when there is also a noise input

to N, i.e., the forced and oscillating signal components

of the three input describing function, Nf(A,b,a) and

No(A,b,a) must approach the asymptotic values of (1.7).

This, of course, occurs when a is vanishingly small. A

check for two common nonlinearities, ideal relay and

saturation, indicates that (1.7) holds for ar = a > 3.

The nonlinearity N will be used in a feedback

system (see Fig. 1.2). The output of N will always be

non-gaussian (since only saturating nonlinearities are

used) and in this structure the output is fed back so that

the input to N is not in general gaussian. A linear

system with gaussian input produces a gaussian output.[17]

Also, it has been empirically observed [12 ,17 ] that when a

non-gaussian signal is passed through a linear bandpass

filter the output tends to a gaussian distribution (this

can be proved for non-gaussian white noise or for vanish-

ing bandwidth). Further, the RIDF has exhibited good

agreement with experimental measurements[13]obtained from

a feedback structure using two nonlinearities of the type

considered here, viz., an ideal relay and a relay with

dead zone. Therefore we shall assume that the noise input

to N is reasonably well approximated by a gaussian dis-

tribution.

In the development of subsequent synthesis theory the

nonlinear element will be represented by the quasi-linear
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approximations on the right of Eq. 1.7 and (1.8) will be

taken as a specification to insure the validity of this

approximation. Eq. 1.13 will not be taken as a specifi-

cation because it is not possible to simultaneously

achieve this and the feedback specifications that are

assumed in the following section. Rather, for any com-

pleted design the maximum tolerable noise input to the

nonlinearity can be calculated and the describing func-

tion holds as long as this limit is respected.

1.3 Statement of the Design Problem

The system structure of Fig. 1.2 will be assumed

throughout. P is the plant transfer function which may

contain varying or uncertain parameters. The designer

has access to its input and output only. The remaining

transfer functions are compensations to be synthesized,

with the exception of N, which is a nonlinear element of

the type discussed in the preceding section. A sensor

with unity transfer function which introduces noise with

power spectrum f is assumed. D(s) is a disturbance

input and Ao is the applied excitation, present only in

the case of an externally excited oscillating system

(EEAS).



i AR nD(s)

R(s) F G /H X(s) G2Hp C(s)

Figure 1.2 Oscillating system two degree-of-freedom
feedback structure.

The feedback system in Fig. 1.2 is a two degree-of-

freedom structure, so called because there are two

signals that can be independently processed and used to

control the plant output, viz., the command input R(s)

and the system output C(s). For linear systems, all two

degree-of-freedom structures are equivalent with respect

to the attainable benefits of feedback (sensitivity to

plant parameters and disturbance attenuation), and with

respect to the effect of sensor noise q on the

plant. 1 81 Since we replace N by a quasi-linear

approximator, all other two degree-of-freedom structures

are equivalent to Fig. 1.2 in the above respect provided

two constraints imposed by the nonlinear element are

observed. First, the nonlinear element must be in the

forward path in series with the plant to provide the zero

gain sensitivity property. Second, the nonlinear element

must be embedded between two compensations to allow for

simultaneously satisfying the quasi-linearity constraints
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and a limit on output oscillation magnitude,

The oscillating signal component at the input of N

in Fig. 1.2 will be taken as sinusoidal so the usual

filter hypothesis of describing function theory must be

invoked. In particular the output from N will be a

periodic signal with fundamental frequency w and

GIG2P must filter out higher harmonics well enough that

they may be neglected at the input to N.

The synthesis problem is to design the compensa-

tion functions in Fig. 1.2 so that the system output

always satisfies given specifications in spite of bounded

ignorance or variation of plant parameters and distur-

bance inputs. Some a priori knowledge of command and

disturbance inputs must of course be assumed.

Below we give a statement of the specifications, in

their most general form, that the subsequent synthesis

theory is capable of dealing with. In any particular

design example one or more of these may be absent.

Specifications

Nonlinear Element

The nonlinear element N is taken to be adequately

characterized by the DIDF

N = M /A (1.15a)

Nf = M f/A (1.15b)

when quasi-linearity constraints
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x, (t)j < A/ (I.16a)

01b < ( s 1lo6b)

are satisfied, Some specific nonlinear element must of

course be selected before a numerical design can be

executed, so that M .M_-t ane R are known or can be

determined by the designer. xf(t) is the forced signal

component of input to N arising from command or dis-

turbance inputs. Wb is the bandwidth of Xf(jw). A is

the magnitude of the oscillating signal input to N.

Eq. 1.16 must hold for all possible xf and A as the

plant and input vary, so extremes will be treated in syn-

thesis. As noted previously there may be a lower bound

on A, e.g., a saturation nonlinearity must be driven

well into saturation before (1.15) can hold. Also, it

was noted in Sect. 1.2 from [10] that a > 3, 8 >3 gives

5% accuracy for the approximation to obtain (1.15) for

some nonlinearities when xf is a sinusoid with fre-

quency in the closed interval [O,wb]. Since xf con-

sidered here will be a transient signal, 8 may depend

to some extent upon its waveshape. Ultimately the choice

of a and 8 is left to the designer, who must consider

a particular nonlinearity and the nature of the forced

signals in his system. It will be seen in design examples

presented later that in practical systems where the SOAS

or EEAS is most appropriate, that wo/ b is forced by
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other design constraints to be rather large.

Pl nt

In the subsequent synthesis theory the plant is

assumed to be a rational transform with known structure,

written as

w E W
K(w) E [K1 ,K 2]P(s,w) = K(w)Ph(sw); K(w) E [K ,K21 (1.17)

w is a vector of all plant parameters bounded by the

set W and K(w) is the high frequency gain factor,

i.e., P(s,w) + K(w)/s e as Is K = min K(w)
1 WEW

2 = max
and K2 WW K(w). The plant parameters may have any

value within the bounding set, or may vary slowly within

this set. By "slowly" it is meant that the change in any

parameter over the time period required to process an

input command or disturbance is negligible. The feed-

back may be quite effective for fast parameter variations

also, [19 but since time-invariant synthesis theory is

used herein the results are valid for slow variations,

and fast variations are not considered.

Extreme Input

The extreme command or disturbance input that the

system is required to accept must be specified. By

extreme, we mean the forcing signal input that most nearly

causes the system to violate the quasi-linearity
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constraints. This input denoted by R (s) or D (s)

will be the largest magnitude and/or the fastest input

to be applied to the system. For example, if the command

inputs are steps, then R (s) = q r/s where qr repre-

sents the largest step.

The transfer function for commands in Fig. 1.2 is

denoted by T(s) = Cf(s)/R(s) where Cf(s) is the forced

signal component of output. We assume that a nominal

transfer function Tn  is specified alona with bounds on

permissible magnitude variation AlnIT(jw) as a function

of w. The nominal response and sensitivity may ini-

tially be given in the time domain as cn (t) and an

envelope of permissible responses, e.g., gl(t) < cf(t) <

92(t), where cf(t) is the response due to a specific

command input, say a step. Such specifications may be

translated approximately to the frequency domain as

discussed in [221.

Although the oscillating systems treated herein

may be used for nonminimum phase [20 ] designs, there is

not available at present a complete synthesis theory to

satisfy sensitivity specifications of the above nature,

i.e., regarding time response. For this reason we

assume T is minimum phase and since T(jw) in this

case is completely determined by IT(jw) [21] we treat

only the magnitude in the design procedure for satisfying
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sensitivity specifications. However, if one is presented

with specifications on both magnitude and angle varia-

tion for T(jw), these may be handled with the synthesis

method presented.

Disturbance Response

In this paper the disturbance D(s) of Fig. 1.2 is

treated as a deterministic input (a random input with

sufficient restrictions could be treated using the RIDF).

Specifications are assumed given as an upper bound on the

disturbance transmission magnitude ITD(j) I =

ICD(jw)/D(jw) . For minimum phase systems such a bound

can be obtained approximately from a time domain speci-

fication of the form Icd(t)I < g 3 (t) provided the form

of the disturbance inputs is known.[22]

When command transmission sensitivity dominates in

a design, but nevertheless disturbance inputs exist, it

is usually desirable to place a damping constraint on the

disturbance response. Even though TD may not be

specified over an entire frequency band, we require that

it have no significantly underdamped poles. Since

TD = 1 /(L+L f where Lf = NfG1 G2 P is the forced signal

loop transmission in Fig. 1.2, we require

L (jw)
+Lf(j) < ; w. (1.18)

1+L f(j) - V

This places an approximate constraint on the complex pole

pair nearest to the jw axis in 1/(l+Lf), and thus
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loosely limits settling time and overshoot of cd(t)

Also, one may verify on the Nichols chart that (1.18)

establishes minimum gain and phase margins.

Output Oscillation Constraint

For a useful oscillating control system there must

be some constraint on the magnitude of the oscillating

signal component of signal at some point in the system.

In Fig. 1.2 we have a sinusoid of magnitude A at the

input to N. For this sinusoid N is represented by

gain Mo/A (Eq. 1.15a), so the output from N has

magnitude IMo . Thus specifying that the system output

have magnitude less than m, the constraint is written

IM G2 (j o ) H ( j w )K mPh m(jWmo )  < m, (1.19)

where K mPhm(j o) = max p(j o )

Oscillation Freauency Variation

In the SOAS the frequency of oscillation w

occurs at the frequency of 1800 phase lag in the loop

transmission, This will vary some due to inevitable

inaccuracies in the loop compensation elements. In the

EEAS we must have a generator that cannot be perfect.

Thus, let w' be the center or averaae value of wo

The variation due to the above sources is parameterized

by y c where

Wo E [Wo/Yc' Woyc = . (1.20)0 0 0 c c
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Y is assumed known as a specification in the synthesis

procedure. Note that wo may vary even more due to

plant parameter variations, but this component is dealt

with separately in the design.

Limit Cycle Quenching Gain Margin

Let Lo = NoG G2P from Fig. 1.2 be the open-loop

transmission for the oscillating signal component. In

the EEAS it will be necessary to quench the natural limit

cycle of the system. As will be shown later, this

introduces a gain margin requirement on Lo, written

IL (jW7)I < p , (1.21)

where w satisfies /L (jw ) = -1800. p will depend

on the nonlinear element that is used. This specifica-

tion does not apply to the SOAS.

Aside from the optimizing criterion, which is

treated in the next section, the above completes a state-

ment of design specifications and constraints. Admittedly

some of the above are rather broad in nature and some

approximations are required. However, they represent a

reasonable compromise between the desire to be as analy-

tical as possible on the one hand, and on the other, to

get results that have practical application.
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1.4 Optimization Criterion

The specifications of the preceding section will be

taken as inviolate, but upon quasi-linearization of the

system in Fig. 1.2 these can be satisfied by an unlimited

number of designs provided the plant is minimum phase.

Therefore it is desirable to use this reservoir of de-

sign freedom to optimize in some fashion. In particular,

the rms noise power at the plant input (or output) due to

sensor noise input n will be minimized, as shown below.

As explained in Sect. 1.2 the RIDF, Nr = M /A, for

odd, static, and single-valued nonlinearities with

gaussian inputs is a pure gain. Assuming N in this

class, the sensor noise n in Fig. 1.2 sees an equiva-

lent linear loop transmission Lr = NrG G2P. This is

related to Lo = NoG G2P, the oscillating signal loop

transmission, by the gain factor N /Nr  (from Sect. 1.2

No/N r = No/N f  2 for some common nonlinearities) so we

can equivalently discuss optimization of L which iso

more closely related to the specifications. Letting e

denote the excess of poles over zeros in Lo, a number

which of course remains fixed while comparing the quality

of any two designs, then at high frequencies

K
Lo(w) + -e as w + o. (1.22)0 e

The optimum L will be taken as the one with minimum

K.. This criterion has been used previously for linear

systems. [22,23
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In Fig. 1.2 the noise transmission to the plant

input is

T r
T = r (1.23)

P(1+L )

Using Lr = QP we see that

P(jc ; ILr(jW)I > 1
I (jw) ! (1.24)

IQ(jw)l ; ILr(ja) I  < 1 .

rl is the power density spectrum of the sensor noise

+
input, so writing n(w) = n (jw)r (-jW) and T =

Tq (-jw), the mean square noise at the plant input is

TiO
2 1 +
i = TT nd . (1.25)

With the aid of Parseval's formula[241], this may also be

written

a -1= f +T 2dt (1.26)

Let us temporarily take n as white gaussian noise.

In a nontrivial oscillating system design problem it

will be seen subsequently that the oscillating frequency

Wo is constrained to fall above some lower limit. For

the SOAS the magnitude of Lo  is constrained by

(Lo(jwo ) = -1) the choice of wo. A similar constraint

is later shown for the EEAS arising from IL0 (j)I < p.
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Approximately over the frequency range (O,w,) the

designer has little control over noise transmission T

in (1.24). First, because at low frequencies the sensi-

tivity and disturbance attenuation specifications

generally dictate some loop transmission magnitude

ILr(jw) I> 1 and the designer of course has no control

over P. Above this frequency range but still below

W , Lo or Lr cannot be reduced significantly because of

the magnitude constraint at wo. It is only beyond wo

that Lo  can be reduced with a steep slope and the

accompanying large phase lag. In Fig. 1.3a we show a

hypothetical frequency response for P. With the

oscillating frequency at wo as shown, the resultant

oscillating loop transmission La is shown along with

No Qa /Nr These are in decibles vs. log wm The noise

power integral (1.25) is on an arithmetic scale so the

mean square noise power at the plant input is propor-

tional to the area under the IQal curve on the arith-

metic scale of Fig. 1.3b. Choosing a smaller oscillating

frequency, say mo/2, the new Qb and Lb are shown

and noise power is now proportional to the area under the

dashed IQbl curve of Fig. 1.3b. In the frequency region

where ILr(jw)I < 1, but ILr(j)l > IP(jw) , the noise

is amplified by the loop compensation Q (Eq. 1.24),

and from Fig. 1.3a IQ(jw) becomes larger over a larger

frequency span as wo is increased. Clearly, we should

design for the smallest w0 possible, and because noise
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rdNo Q (j) I /Nr-

\ N log w
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P (j.) t 

(a)

I Qa (j) 12

0 0 /2 Wo 4

(b)

Figure 1.3 Illustration of noise power reduction with
loop transmission bandwidth reduction.loop transmission bandwidth reduction.
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power is computed on an arithmetic scale, even a frac-

tion of an octave improvement in wo may give a signi-

ficant improvement.

Now suppose the noise is not white, but has finite

bandwidth. If the noise power is concentrated in the

frequency range above w then the design is still

optimized by obtaining minimum wo, and hence K0  in

Eq. 1.22. This is often the case in control systems

since they generally have small bandwidths and it is

relatively easy to obtain sensors that are free of very

low frequency noise. It will be seen in Chapter III

that wo is minimzed by making ILo(jw) as small as

specifications permit over the low frequency range

(W < W ). Thus, even if the input noise spectrum is con-

centrated in a neighborhood of wo there is probably

little improvement possible over the above optimization

scheme.

The above optimization criterion was based on the

nonlinearity having a pure gain RIDF, however, it is

reasonable to expect that it may also produce an optimum

design, at least for the case of white noise, for a

broader class of nonlinearities.

In summary, as each design specification is con-

sidered the synthesis theory will be developed with the

goal of minimizing oscillating frequency wo (w for

the EEAS) which in turn yields minimum Km and rms noise

power at the plant input.



CHiAPTER II

SOAS SYNTHESIS FOR SIMULTANEOUSLY SATISFYING

QUASI-LINEARITY AND OUTPUT LIMIT CYCLE CONSTRAINTS

2.1 Synthesis of an Elementary SOAS.

In this section the synthesis of a simple SOAS is

described. The SOAS adaptive property of zero sensitiv-

ity to plant gain changes is shown as well as the basic

cost in terms of loop transmission bandwidth required to

obtain this property. It is found that three basic fac-

tors are the determinants of the loop transmission band-

width, and that they all influence the bandwidth with

equal weight. These three factors are the spread of

plant gain variation, the maximum input that the system

is required to process, and the maximum limit cycle

magnitude permitted at the system output.

The structure shown in Fig. 2.1 is used with N a

nonlinear element characterized by the DIDF components

No = M /A (2.1a)

N = M f/A (2.1b)

when quasi-linearity constraints

maxlxf(t) I < Al/ (2.2a)

Wb < Wo/ (2.2b)
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are satisfied. M , Mf, U, and P are parameters of

N, Al is the minimum limit cycle magnitude input to N,

and xf(t) is the forced signal input at N having

bandwidth wb"

-1

Figure 2.1 SOAS structure.

In Fig. 2.1 P is the given plant which the

designer cannot alter, and containing uncertainty in its

gain factor only, say P = KPh = K/[s(s+a)] with the

gain factor uncertainty bounded by K E [K,K 2] and a

known. The remaining elements in the structure are com-

pensations to be obtained in the synthesis procedure.

It is assumed that no disturbances are acting on the

system.

The transfer function is specified, and for illus-

2 2tration suppose it is T(s) = w /(s+w ) . The limita a

cycle component appearing in C, the system output, is

to have magnitude less than m, and let the extreme

input be a step R (s) = q /s.
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It is nenessary that the describing function Nf

be valid for the significant frequency components that

must appear in the system output, hence the oscillating

frequency is constrained to be above the transfer func-

tion bandwidth by the ratio B of Eq. 2.2b. IT(jwm) I 
=

l//2 gives nm = o (/ 2 - ! ), so

w > 0 A = S a(/2-l) (2.3)

The loop transmissions for oscillating and forced

signal components are respectively

M
L =NGGP - G GKP (2.4a)

o = NoGG2P A 12 h

and

M
L, = NfGG 2 P = GlG2 KPh . (2.4b)

L has a valid linear transmission interpretation at

the oscillating frequency only and L is interpreted

as a linear transmission over (O,w/) ). To sustain a

limit cycle in the system we must have Lo(jW = -1,

which yields from (2.4a)

A= IMGl(Jwo)G 2 (0o )Ph(jW o) . (2.5)

The right side of (2.5) contains no uncertainty or vari-

ation so A/K must be constant and therefore can be

written A/K = A1/K1 o Putting this in (2.4b),
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Lf G1 G2P h h (2.6)
A1

which shows that the forced signal loop transmission

does not change with plant gain, i.e., for any change

in plant gain K an exactly compensating change occurs

~ 1 L f. Since T = FL/(1+Lf) there is no

uncertainty related to the transfer function in this

design with only plant gain variation.

Similarly, the only uncertainty in the forcing

input to N, Xf, arises from changes in the command

input R. Using the extreme input and the specified

transfer function, we write with the aid of Fig. 2.1,

RT AR T AIRT

Xe  _ e e (2.7)
NfG 2P MfKG2 Ph  MfKG2P h

We are assuming H = 1 throughout this section. The

design is carried out to insure that X satisfiese

quasi-linearity constraints (2.2) using Re, then for

all other R, Xf also satisfies these constraints.

Introducing the maximum magnitude limitation m on

output limit cycle gives, from Fig. 2.1,

IMG2 (jw )K 2Ph(jo)I < m . (2.8)

Solving (2.7) for G2 and substituting in (2.8),

X .(j. ) Mo IK2
> IRe(jw0 )T(j 0 ) . (2.9)

A1 MfKlm
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The last inequality is entirely equivalent to (2.8),

but written in this form it provides some helpful in-

sight for choosing Xe, The right side of (2.9) is com-

pletely given by specifications. The left side is

determined entirely by the choice of Xe, but this con-

straint on Xe is partly in the time domain and partly

in the frequency domain. This is seen by using equality

in (2.2a) to write IXe(jo) /A 1 =

Xe (jWo) I/[amax xe(t) 1 "o is constrained by

o > W m to be above the transfer function bandwidth so

IRe(jw)T(jw)f will be a decreasing function of w in

the range of permissible wo. Since the objective is to

minimize w o we want to maximize IXe(too ) I/A 1 at

fixed wo, subject to the quasi-linearity constraints

(2.2) on X . Observe that using R qr/s, the

right side of (2.9) contains the factor qrK2/Klm, thus

for any fixed choice of Xe the oscillating frequency

wo increases or decreases with this factor. These

three specifications all influence the required loop

transmission bandwidth in the same fashion. This will

continue to be the case even in the most complex SOAS

designs.

The selection of Xe  is discussed in some detail

in Appendix A, and it is seen there that if IXe(j) is

required to be a relatively smooth function of w, then
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q x o b
X W b (2.10)

S + wlb

is a good choice that also has the advantage of simplic-

ity. Of course Xe will have some constraints imposed

by the particular plant structure and input form.

Eq. 2.10 is for Type 1 plants (one pole at the origin)

and step inputs. Adopting (2.10) for Xe  gives
max I(t) = qxwb and hence A1 = aqx b The deter-

mination of qx and wb will be discussed presently.

Using Xe  from (2.10) and A1  as above in Eq. 2.7,

the compensation G2 is now

A ReT a(s+wb)ReT
G2  MfK XePh MKPh (2.11)

To obtain the constraint on wo due to (2.8), G2

from (2.11) is substituted giving

IMoG 2 ( j o ) Ph ( j W) Io

afK1 IMo(jwo+Wb)Re(jWo )T(jw) . (2.12)

Since we must have wb < wo/, the center quantity in

(2.12) is approximately independent of wb, therefore

any ab < o/B will not influence the wo satisfying

(2.12). It is reasonable to give xe(t) a response time

comparable to that of the system output. Thus take wb
near wa or w m If we take it at wb = wa the pole
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of Xe cancels one pole of T in G2  (Eq 2.11)

and thus simplifies G2.

Using the given specific form for R T in (2.12),e

2aq. wA M
IM G (jw )P (jo )  - a o <  (2.13)

Mf 1  0  c, a 2

The quantities of (2.13) are sketched in Fig. 2.2 and

the minimum wo due to this constraint is labeled. The

larger

- IMoG 2 (jc)Ph(jw)I

' b 0

b = ma

mi/K2

Figure 2.2 Constraint on w due to limitation

on output limit cycle.

of Bb, or the minimum wo that satisfies (2.13)

must be taken as the design value of w . We can further

approximate in (2.13) using wa < wo to get

> Mo0K2gqr(2o >Wa [MK 2 , (2.14)
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which again shows the basic importance of the quantity

qrK 2/Klm. An approximation equivalent to (2.14) is given

in [61. One may observe in Fig. 2.2 that addition of

more poles to T, which then appear as poles of G2

(see Eq. 2.11), have a very beneficial effect on re-

ducing 0 .

Since no disturbances have been assumed for the

present design and there is no uncertainty in Ph '
there is no gain-bandwidth requirement for loop trans-

mission Lf. Thus the only requirement for G1  is to

shape Lo to establish the limit cycle at the proper

frequency. Finally, after G1  is selected, the pre-

filter F may be obtained directly from the relation

F = T(1+Lf)/Lf. The design procedure is next demon-

strated by a numerical example.

Example

Specifications

Nonlinearity:

Ideal Relay No = M/A = 4M/rA (2 .15a)
with output
level M. Nf = Mf/A = 2M/wA (2.15b)

Quasi-linearity maxlxe(t)I < A1 /a; a > 3 (2.16a)
t

Constraints J b o/8; 8 > 3 (2.16b)

Transfer function:

T(s) = (6)2(15)22 2 (s+6) (2.17)(s+l) (s+6) (s+15)
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Plant:

P(s) = KP(s) K E [K 1 2 ] = [1,100] (2.18)
s(s+1)

Maximum input:

Re(s) = qr/s = 10/s (2.19)

Maximum limit cycle output:

m = 0.1 (2.20)

Design

The constraint on wo due to the required band-

width of T is wo> w = 3(/-1). Taking Wb = i,

at one of the poles of T, and using Xe in the form

of Eq. 2.10 yields

qx b 9x
X (2.21)

e s+ b s+1

Then A = eqx b = 3qx giving from (2.7)

ART
1 e

M 2 - K1XePh

2 2
30 (6) (15)2 (15) = MoG2/2 . (2.22)

(s+6) 2 (s+15) 2  2

Applying the output limit cycle constraint,
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Mo G2(jo ) P h ( j wo ) 1

60(6) 2 (15) 2 ms(s+l)(s+6)2+15) < .001 - . (2.23)
s(s+l)(s+6) (s+15) 2

j&)0

The quantities in (2.23) are plotted in Fig. 2.3 and

the minimum oscillating frequency is found to be

S> 26.5 rps. To see the beneficial effect of extra

poles in T, note that if the two poles at -15 were

deleted the minimum oscillating frequency would be

37 rps as shown by the dashed segment on Fig. 2.3.

In the absence of disturbance inputs and parameter

uncertainty in Ph there is no gain-bandwidth require-

ment for Lf. The only specific requirement is that

Lf(jo) = -1 = Lo(j o)/2. We choose the minimum

Wo = 26.5 rps and design Lf accordingly, making ILf(j)l

quite small for w < wo as shown in Fig. 2.3. The

resultant rational loop transmission is

Lf = Lo/2

127.585x10 (s+l)
2 22 (2.24)s[(s2+2(.6)35s+35 (s2+2(.4)60s+602 2

Thus

Lf AILf
1 NfG2 P K MfG 2 Ph

A 3.12x10 [(s+1).(s+6)(s+15)]2
2 (2.25)

[(s +2(.6)35s+35) (s2+2.6(.4)60s+60 )]
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Figure 2.3 Frequency response of functions

aplicable to design example.
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Only the prefilter remains to complete the design.

Factoring the numerator of 1 + Lf the data in Table 2.1

is obtained. The prefilter is then obtained

Poles Zeros

.164 26.8 1

.813 48.

.255 60

.468 67

K = 1 K = 7.585x012

Table 2.1*

Data for Lf/(l+Lf) for Lf of Eq. 2.24

from

F = T(1+Lf)/Lf . (2.26)

Inspection of the data in Table 2.1 for Lf/(l+Lf) and

in Eq. 2.17 for T shows that F has 8 zeros and 7

poles which is not realizable. Additional far poles

must be added to T and therefore to Xe in Eq. 2.7.

For any rational function F(s), K and K are

defined by F(s) KoX/sn  as Isl + 0 and F(s) + K/s m

as Isli + .
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From Fig. 2.1 we can write (H = 1) Xe  R eFG /(1 + Lf)e e . 1 f

so Xe must always have the same excess of poles as

R FG1 ( > 3 for step R). If such poles are added to

Xe at frequencies well above wo they will have negli-

gible effect on maxx (t) and they will not alter thet e

calculation for minimum oscillating frequency in Eq. 2.23.

Thus we add complex pole pairs to T and Xe at 60 and

67 rps respectively which cancel the zeros of 1 + Lf at

those locations. The resultant prefilter has parameters

as given in Table 2.2. Since H is

Poles Zeros

P w z W

1 .164 26.8
1 .813 48.
1
6
6
15
15

-3
K = 1 K = 4.9x10 3

0 0

Table 2.2. Parameters of
prefilter F.

being taken as unity this completes the design of all the

compensation blocks in Fig. 2.1 except for choosing the

two constants A1 , and the relay output level M. With

an ideal relay the design theory leaves these constants

completely arbitrary. For some other nonlinearities,

e.g., saturation, there will be a lower bound for A1
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given in terms of the parameters of M. These constants

will in practice be chosen from consideration of signal

levels within a given system. qx was not given a value

either, however, we have used A /qx b = a = 3 and taken

Wb = i, so qx is determined by the selection of Al.

9 9An Irelivfor Lowering

the SOAS Oscillation Frequency.

In the previous section the smallest possible

oscillation frequency was obtained under the assumption

that Xe was to be in some sense a smooth function of w.

It was found that the most significant factor requiring

Wo to be large was the combination of input magnitude

gr, range of plant gain variation K2/KI, and the demand

for a small output limit cycle component m, so that the

basic determinant of wo was the magnitude of the

quantity qrK2/Klm. Recall the following equations

(Eqs. 2.7-9).

ART1IeXe  e (2.27)
KlMfG

2Ph

IMoG 2 (jwo)Ph(Jwo) < m/K 2  (2.28)

IXe (jW )1 MoK 2IX IRe (jo)T(j o) (2.29)

Al MfKlm

Eqs..2.27 and 28 are obtained from Fig. 2.1 with H = 1,
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and (2.29) is obtained from substitution of G2 from

(2.27) into (2.28). Eq. 2.29 shows that if one could

place large magnitude peaking in Xe(jw) at o, and

still maintain control of the time domain quasi-linearity

constraints, a significantly smaller wo may satisfy this

inequality. Recall the quasi-linearity constraints are

maxlx ( t ) l < A /a (2.30a)

Wb < Wo/8 ° (2.30b)

To provide for peaking in IXe(jw) a pair of under-

damped poles are introduced at wo in such a way that
maxx (t) can be simultaneously controlled 25 ] . Xe (t)

is written

xe(t) = Xel(t) + Xe2(t)

S wb e -b + qxw b(-l)e 0 cos[%t/ -17 2]. (2.31)

In the frequency domain

Xe(s) = Xel(S) + Xe2(s)

qxb + qxwb(X-l) (s+ o)
2 2s+Wb s +2 w s+w

Xel (s)/H(s) . (2.32)



42

Solving for H gives

2 2s +2cm s+ 2

H - o0] .(2.33)
2 +[(+1) o+(A-l) Wb]s + [ao+(X-l)r(1b ]x +

With the above choice of Xe, maxlxe(t) = Xqx, can

be taken as close as desired to qxwb by taking X

sufficiently close to unity, while r is independently

adjusted to make Il/H(jwo)I, and thus IXe(j o ) I, as

large as desired. This means that with the ideal X ine
(2.32), (2.29) can be satisfied for any wo. Therefore,

the bound on output limit cycle component (2.28) does not

constrain w
0

We prefer to treat the peaking compensation function

H as a separate function so in Eq. 2.27 G2 is replaced

by G2H giving

Xel A1ReT
e  e (2.34)

H KIIMfG2HPh

and

ARTle
Xel = . (2.35)

KMf G2P h

The function in (2.33) is the compensation H shown

at the output of N in Fig. 2.1 so the constraint on

output limit cycle from (2.27) is now replaced by

IM2 G(jwo)H(jw0)Ph(jw o) < m/K 2 . (2.36)
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It is undesirable to have the highly underdamped zeros

of H appearing in the loop transmissions L0  and Lf

so 1/H is inserted at the nonlinearity input as shown

by Fig. 2.1. The following example demonstrates a

design using the ideal limit cycle filter H.

Example

Specifications

The specifications are the same as those in the

example of Sect. 2.1, Eqs. 2,15 through 20.

Design

The constraint on oscillating frequency due to

required transfer function bandwidth is, as in the

example of Sect. 2.1, w > w = 3(/-1)

Xel , the low frequency dominant part of Xe

is taken as

qxwb qx
Xel , (2.37)

s+Ckb  s+l

with Wb = 1. This constrains o > B b = 3 due to

quasi-linearity constraint (2.30b). With the narrow limit

cycle filter H it is possible to design for any w > 3.
o --

Let us use o = 10, (wo = 3 could be used, but it is

seen later that even 10 is not practical) and choose

X = 3/2. Then from (2.30a and 31) A = Xcqxw b = 4.5qx'

since a = 3 from the specifications. Using Xel from

(2.37) in (2.35) gives
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A1 R T 45(6) (15)2
Mf 2 KX (s6) 2 2KlXel h 6(s+15)

= MoG2/2 (2.38)

The output limit cycle magnitude constraint is

Mo G2 (jwo)H(jwo)Ph(jWo)l

H(J) 90(6) (15) 2
SH(j (6)25 2  .001 = m/K 2 . (2.39)

s(s+l)(s+6) (s+15)
jw o

We find at wo = 10, MoIG 2 (jlO)Ph(jl0)j = -15.7db, so

that IH(jl0) = -60 + 15.7 = -44.3db. H, given by

Eq. 2.33 is completely determined except for . Solving

for that provides the required IH(jl0) gives

S= 0.0015 and

2 s+2(.0015)10s +102
H(s) = . (2.40)

s +2(.0219)8.17s+8.17

The quantities on both sides of Eq. 2.39 are plotted on

Fig. 2.4.

Shaping G1 to establish the oscillating

frequency at 10 rps, a satisfactory compensation is

Al 1.2.6xl04[.(s+l) (s+6) (s+15)] 2

G1  2 2 , (2.41)
[(s +2(.6)13s+132)(s +2(.4)25s+25 )]

and the corresponding loop transmission is



M.dM0G2Cj(-j)H(jw)Ph(jw) I NG(jw)G 2(4) W
f )

40 2-20

20

•o 0 ( S

rO

2 -40- m/K. Lj ) -L j)1

Fig. 2.4 Frequency response of functions

applicable to design example.
un



f /2

4.58xl09 (s+ ) . (2.42)
2 2 2 22s[(s2+2(.6)13s+132) (s +2(.4)25s+252 2

There is no magnitude or bandwidth requirement on Lf
other than that Lf(j o ) = Lf(jl0) = - 1/2, so

lf (j-)j nas been chosen rather small. A plot of Lf

is shown on Fig. 2.4. Factoring 1 + Lf gives the data

on Table 2.3.

Poles Zeros

p L z W

.172 10.1 1

.797 18.2

.278 24.4

.455 27.3

K = 1 K = 4.58x109

Table 2.3. Parameters of Lf/(l+Lf)

using Lf from Eq. 2.42.

The prefilter is found from

F = T(1+Lf)/Lf , (2.43)

and comparing data for T (Eq. 2.17) and (l+Lf)/Lf
from Table 2.3, it is found as in the previous example

that F has an excess of zeros over poles, and is

therefore not realizable. With the justification given

in the design example of Sect. 2.1, we add additional

far pole pairs to T and Xe at 24.4 and 27.3 rps with
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proper damping to cancel the zeros of 1 + Lf at

these locations. These are well above o and so have

Poles Zeros

1 .172 10.1

1 .497 18.2

15
15

K =1 K = 0.24

Table 2.4 Parameters of
prefilter F.

negligible effect on the design. The design is now

complete, except for a choice of qx and the relay

output level M, neither of which are important to

what is demonstrated in this example. Note that H in

Eq. 2.40 is unrealizable because it has an equal number

of poles and zeros. In the structure of Fig. 2.1, G1/H

and G2H may be realized as single compensation func-

tions so it is not necessary to make H realizable by

itself.

Consider again the idealized

x (t) = Xel(t) + Xe2(t)

-bt - o t  / -

= qx~wbe +qxb(X-l)e cos[ot/1-]21. (2.44)



The quasi-linearity constraint w > P b  implies thato - b

x (t) should have no significant frequency components

above wb, but Xe2(t) is at frequency woa wo
In fact xe2(t) will be a very lightly damped sinusoid

at this frequency. In Sect. 1.2 it was observed that

for odd, static, and single-valued nonlinearities the

incremental input describing function (IIDF), Eq. 1.9,

holds for small sinusoidal components of any frequency

not rationally related to w . Also it was noted that

the IIDF was Nf, the describing function being used for

the total signal xe(t). Hence, if X in (2.44) is taken

near unity, one should expect Nf to satisfactorily

describe the nonlinearity transmission for both xel(t)

and xe2(t) In the following section we will not be

able to make xe2 (t) arbitrarily small, so a simulation

will be necessary to verify the validity of Nf for the

total x (t).

We have shown in the above example that the SOAS

oscillating frequency can be reduced to the limit

required by quasi-linearity, i.e., wo = max[ bB',m], by

using narrow and high peaking in Xe = Xel/H. Reducing

wo will in general reduce the sensor noise power that

is transmitted to the plant input. As discussed in

Sect. 1.4 this noise power is approximately proportional

to the area under the ILf(j)/P(jw)1 2 =

NflGl(jw)G 2 (jw) 2 curve on an arithmetic scale. The

quantity NfIGl(jw)G2 (jw)I in db has been plotted
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in Fig. 2.3 and 2.4 to illustrate its significant re-

duction as a result of the decreased oscillating fre-

quency w0o However, the ideal design scheme in this

section is not practical. Consider, in Fig. 2.4, the

effect of a small variation of wo, say from 10 to

9 rps. The system output limit cycle magnitude is given

by K2 MolG2(jWo)H(jwo)P h(J o ) 1 and at 9 rps this

quantity has increased by 60 db or a factor of 103. Thus,

even small variations in o, which will always be

present due to imperfections of the compensating elements,

can cause the limit cycle component of system output

to far exceed its specified bound.

In Sect. 2.1 a rather simple synthesis scheme gave

a large value of wo, basically determined by the ratio

qrK2/Klm. In the present section an idealization in the

design of Xe has essentially eliminated this constraint

and allows wo to be determined by other, and frequently

less severe, constraints. The idealization has very

limited, if any, practical use, but it indicates that

one can possibly do considerably better than in Sect. 2.1.

In the following section we shall explore the middle

ground between these two extremes, and in the process

develop a synthesis scheme that can be applied to real

systems.
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2.3 Satisfying Quasi-Linearity and Output Limit Cycle

Constraints with Minimum Oscillating Frequency

and Practical Specifications.

In Sect. 2.1 it was shown that the combination of

SOAS output limit cycle magnitude limit, range of plant

gain variation, and command input magnitude places a

severe limitation on the minimum achievable loop trans-

mission bandwidth (or oscillation frequency). This

phenomenon is accentuated when the plant gain variation

is large, which is just the situation where the SOAS is

most useful. In Sect. 2.2, by using a very special kind

of limit cycle filter the above constraint on bandwidth

of loop transmission was removed completely, however, it

was pointed out that this limit cycle filter was too

much idealized to work in practice. Nevertheless, this

ideal filter has provided the insight and motivation for

the design procedure to be developed in this section. In

the following development the anticipated range of

oscillation frequency variation is taken as a specifica-

tion and a notch limit cycle filter is used to reduce

the oscillation frequency as much as is practical in a

given design situation. It is found that the cost of

reducing the oscillation frequency is the necessity to

realize an increasingly complex filter and its inverse

in the system.

The same feedback structure is used, and it is shown

again in Fig. 2.5 for easy reference. The constrained
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R G/H X G2H D

--

Fig. 2.5 SOAS feedback structure.

part of the system, the plant P, is now assumed to

have uncertainty associated with its dynamics as well as

the gain factor, written

P(s,w) = K(w)Ph(s,w); K(w) (2.45)

w is the vector of all plant parameters and K(w) is

the high frequency gain factor (P(s,w) + K(w)/se as

s K (w) = n K(w) and K max K(w). In1 wW 2 wW

subsequent notation the functional dependence on w will

be omitted unless specifically needed for clarity. The

oscillating frequency w0  is assumed to vary about a

center value w' with the variation quantified by the

given parameter y, i.e.,

Wo E [w/Y,W~Y1 = Y (2.46)

W' is not known at this point, rather it emerges from

the synthesis. Y = YcYh is made up of a component of
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specification y0 due to compensation uncertainty from

Eq. 1.20, and a component from plant parameter uncer-

tainty Yh treated in Chapter III.

In Fig. 2.5 let Zf be the forced component of

plant output signal due to either a command or distur-

*bance input and Xf is the corresponding input to N.

Then Xf = Zf/[NfG2HKPh] = AZf/[MfG2HKPh]. There is

some more restrictive set of plant parameters We C W

and input that produce the extreme nonlinearity input

Xe, i.e., the fastest and/or largest Xf which comes

closest to violating quasi-linearity constraints

malxe (t) I < Ae/a (2.46a)

Wb w .o/8 (2.46b)

All the extreme parameters and functions are so denoted

with a sub-e and we have

A Z
e eX = MfG2  h (2.47)SeMGH

f 2 e he

For the remainder of this section the discussion is re-

stricted to command inputs so Ze  is made up of the

extreme input R and an extreme transfer function Te e

which is the transfer function only when Ph is at the

value Phe Thus,

ART
= ee

X (2.48)e MG HK P (f 2 e he
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There is a distinct pairing of Te with Phe and

Appendix B discusses how Phe is obtained and paired

with Te . Here we assume the pairing has been made

and both functions are known. In general Ph may be

independent of some elements of the parameter vector w

so that when it is fixed at Phe ' Ke  can still have

uncertainty Ke E [Kel,Ke2] C [KI,K2]. However, Ae/K e

in (2.48) is constant by the same arguments used earlier

when Ph had no uncertainty at all. Thus any value in

the set [Kel,Ke2] may be used in the following syn-

thesis calculations. We shall simply denote this choice

by K and when A is obtained it is the A thate e

exists when P = K P he To clarify the above consider

the following plant. P(s) = K a/[s(s+a)] where

w = [K£,a] with K and a varying independently in

[K'lK£2] and [al,a 2 ], giving K E [K K2] =

[K 1alK 2a 2 ]. Then Phe = l/[s(s+ae )] while

Ke E [Kel,Ke2] = [K 1ae,K 2ae ] , and one might choose

Ke = K£1a e  to use in the synthesis calculations.

It is again convenient to separate Xe into the

"smooth" part and the part due to the complex limit cycle

filter H as

Xel qxwb x
X H S+wb (2.49)

e H s+Hb  H

with X =. xwb . (2.50)



The qxo/(s+wb) part of Xel is chosen in accord

with Appendix A and assumes step inputs and one pole at

the origin in the plant. In Sects. 2.1 and 2.2 it was

found that Xe cannot be realized with a single pole,

so Dx allows for the addition of far poles. To

emphasize that the absolute value of Ae or q. are

not determined by the design procedure, the notation

Ae - laqx b (2.51)

is introduced.

Summarizing the above we have

Xel AaqxbReTeXe (2.52)H MfKG2HPhef e 2 he

where

laqxbReTe qxubXe xb be , (2.53)el MfKG2Ph e  S+Wb  x

and Xe must satisfy quasi-linearity constraints

maxlx (t) I< Ae/a = Xq wb  (2 .54a)

Simultaneously the output limit cycle constraint,

IMoG2 (jo)H(j o) hm(jWo I) < m/Km, (2.55)
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must be satisfied, where IK P (j() = max (j )m hm wEW 0

Solving (2.53) for G2 and substituting in (2.55) gives,

after some rearrangement,

Xel (j Wo0 )
IA H(jw -e o

X (jw ) I M P(j)
> K--MIMfIRe(JW )Te (J) I Ph (jo )  (2.56)

e Ke m M e e Phe(jWo (256)

The task now is to find a suitable combination of

center oscillating frequency w' , the filter H, and
0

Ae = Auqx b  to satisfy (2.56). Observe that X depends

on H because each H will produce a different

mat Xe(t) for Eq. 2.54a, and therefore demand a

different A. Given values for wo and A, the corre-

sponding IH(jw)I required is obtained from (2.55) as

K em M Xel(jw) Phe (jm)

-Tq w M Re(jw)Te(j) Phm(Jm) ;
[H(j1) a x b

(2.57)

The ideal limit cycle filter of (2.57) is shown in

Fig. 2.6a using a straight line approximation over Q.

An obvious modification modification of (2.57) will give

H with finite slopes shown dashed in Fig. 2 .6a. Sub-

stituting (2.57) into the first relation of (2.52)
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0 lo

WI
JH(j3) 1I

(a)

Ix e (jW)

loqm

b

aqx

(b)

Fig. 2.6 Ideal limit cycle filter H

and corresponding Xe.

yields

laqxwbKm Me0 P hm(jw)
K--m I f IRe (jw)T (jW)) ; P

(2.58)

Using Xel from Eq. 2.53 combined with IH(jw)I shown

in Fig. 2.6a,the plot of Fig. 2.6b for IXe(jw)I results.

Observe that (2.57) is independent of qx, while
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qx is just a scale factor in (258). Similarly, since

IH(j(o) is evaluated at (1) > B b  in (2.57) where

IXeli(jw) = qxb/w, the value is closely independent of

Wb' i.e., the choice of wb has an insignificant influ-

ence on the determination of minimum w . Therefore it

is reasonable to take wb near the maximum transfer

function bandwidth, wb W m

Xe(jw) is minimum phase, so using the Hilbert

transform[261 as applied to this problem by Bode [271 the

phase can be obtained from the magnitude characteristic.

With both phase and magnitude the time response may then

be calculated as x e (t) =-li[X e (s)]. The following

scheme is used to obtain satisfactory combinations of

w' ,, and H(jw). First choose a value for w'. Then
O' O

iterate on X to find a solution of

maxI x(t ) = max -[IXe(s,X)] = Aqxwb (2.59)

For each wo, X pair H(jw) is given by (2.57). In this

manner one can obtain a plot of X vs. w' as shown in
0

Fig. 2.7. A good estimate for a starting value of w' is

H=1

1 /-
I I 1>logaw'

8 b  1 o

Fig. 2.7 X vs. w' for fixed y.
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obtained by letting H = 1. Then from Eq. 2.53

(assuming negligible contribution to the time response

Xe(t) from the far poles in 1Dx ) A = 1, and

IMoG 2 ( j w )P h m (j) = IMoab xR e(j)T e ( j ) Ph m ( j ) 
/

MfXel (j)Phe(j) I as.shown in Fig. 2.8a. Where this

quantity equals m/Km (Eq. 2.55) gives a suitable value

for w'/y. This is the solution found in Section 2.1
0

I --IM oG2 (jD ) H (jw) Phm (J ()

0 1/y (maximum)
0 H = 1

SMo2 (j)Phm ( j )

l logw

m/Km

I'

(a) o

x e(jw)1
S/ ,

. . logw
qx

(b)

Fig. 2.8 Behavior of functions of interest

as w' is reduced.
0
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generalized to permit variation in w 0 From here we

work to lower frequencies with (a'. Each reduction of

W. causes H to become a deeper and more complexo

filter and it causes maxIxe(t) to increase, thereby

increasing the gain of G2 = aqx bReT /[MfKeXelG2Phe]

at all frequencies. The behavior of H, G2 and Xe

with decreasing w' is illustrated in Fig. 2.8.

Assume now that Fig. 2.7 has been constructed in the

manner explained above. How does the designer use this

curve? First there is some lower bound dictated for the

oscillating frequency by the bandwidth of the transfer

function, wo Bm. Also, a minimum oscillating fre-

quency is dictated by disturbance response and/or Ph

parameter sensitivity considerations which are treated

in the next chapter. Let the largest of these lower

bounds be wl shown in Fig. 2.7, such that some freedom

remains to reduce w' by taking H 3 1. Any

W > W /y can then be chosen as the center value of

oscillation frequency. The designer must choose a value

by making an acceptable tradeoff between loop transmission

bandwidth and the complexity of the limit cycle filter H,

which must be realized twice in the loop of Fig. 2.5.

Having made such a tradeoff, wo and X are available0

from Fig. 2.7. The magnitude characteristic for H(jw)

is given by (2.57), or its finite slope replacement, from

which a rational approximation is obtained. The compensa-

tion function G2 is obtained from (2.52) as
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C2 =  (2.60)
M'K X PL e el he

The compensation G1  is then shaped to provide the level

of loop transmission required for disturbance attenuation

and/or Ph parameter sensitivity over the low and inter-

mediate frequency ranges, and to provide
M

Loe A KeG G2Phe with 1800 of phase lag at the chosen
e

oscillating frequency w'. Finally,
MfKe

Lfe = G G2Phe , and the prefilter of Fig. 2.5 can
e

be designed from

F = Te (1+L fe )/L fe o (2.61)

We mention that for a significant class of design

problems some simplifications are appropriate. Recall

that Ph was defined (Eq. 2.45) so that it has vanishing

uncertainty at high frequencies, i.e., Ph() /se for

large IsI. It follows that when the specifications are

such that a high oscillating frequency is required,

KmIPhm(jwo) I/IPhe(jb)o)1 - Km 2 K2, and this result can be

used to simplify Eqs. 2.56, 57 and 58. Also, some far

poles above w may be assigned coincident in T ando e
Xel giving a reduction of order of G2 seen in

Eq. 2.60. Further, if these poles are a reasonable

distance above wo, neglecting them will have no signifi-

cant effect on the calculation of IH(jw)j or I e(jw)l

from Eqs. 2.57 and 58 respectively, nor will they effect
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xe(t) significantly. This means their location need not

be known during the preparation of the curve of Fig. 2.7;

all we must know is that they lie well above the oscilla-

ting frequency, say above the wo resulting when H = 1
0

in Fig. 2.7 and 2.8a. Therefore they need not be assigned

at any specific frequency until w' is determined and
o

Lfe designed. Since Lfe(jw o ) = 1800, there are in-

evitable poles of Lfe above w' which result in far
fe 0

off zeros of 1 + Lfe. Once Lfe is known these zeros

of 1 + Lfe can be assigned as far poles in Te and

Xe which by (2.60) reduces the order of G2, and by

(2.61) reduces the order of F. This is precisely the

technique used in the examples of Sects. 2.1 and 2.2.

The synthesis technique of this section is next

demonstrated with a numerical example.

2.4 Design Example

In this section a design example with significant

plant ignorance is worked out. The objective here is to

assume that the minimum oscillating frequency is deter-

mined by the combined constraints of output limit cycle

magnitude and quasi-linearity, and then select the

oscillating frequency and design Xe and H using the

methods of Sect. 2.3. This portion of the design is later

incorporated into a complete SOAS design and simulation

in Chapter V.
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Specisficati ons

Nonlinearity:

Ideal relay N = MN/A = 4M/fA (2.62a)
with output
level M Nf = Mf/A = 2M/A (2.62b)

Quasi-linearity max Xe(t)IAe/a= Xqxab; >3 (2.63a)

)^+Cs'/ < /; W 
> 3 (2.63b)

Transfer function:

T (S) (6) 2(25) 2(50)2
Te(s) 2 2 2 (2.64)(s+6) (s+25) (s+50)

Plant:

K (a [a1,a2 ] = [1,10]P(s) = KPh(S) = K aE (2.65)
s(s+a) K e [K1 ,K 2] = [1,10]

The plant parameters a and K are independent.

Extreme command input:

Re (s) = gqr/s = 1/s (2.66)

Maximum limit cycle output:

m = 0.1 (2.67)

Limit cycle frequency variation:

The limit cycle may vary ±12% about the nominal

', i.e.,

w 0 [W'/y,w'/y] = 0; y = 1.12. (2.68)
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Design

The first step is to determine what plant parameter

set constitutes the extreme plant Phe This is con-

sidered in Appendix B and in accord with the conclusions

there we select

1 1P he (2.69)
s(s+a 2) s(s+10)

We also note that for the plant given in Eq. 2.65,

JKmPhm(j o) = maxIP(jW ) I is obtained from

2 10

K P (s) K = (2.70)m hm s(s+al) s(s+l) '

without regard to the particular w0  that emerges from

the design.

The low frequency dominant part of Xe is chosen as

qx b 6q xX q (2.71)el s+ wb s+6'

and the far poles that will eventually appear in Xel

are neglected for the present. If no limit cycle filter

is used, i.e., H = 1, then x e(t) = xel(t) and

Eqs. 2.63a and 71 give maxIxe(t) = 6qx = Ae/a, while

K = K = 1 is satisfactory. Thereforee 1

MG aqxbRe Te
MfG2

KeXelPhe

3 (6) 2 (25) 2(50) 2 (s+0)
2 2 (2.72)

(s+6) (s+25) (s+50)

= MoG /2.
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This is the design value for G2 only if H = 1, which

permits X = 1 in Eq. 2,63a. Otherwise G2 in (2.72)

will be multiplied by X > 1. Using G2  from above and

Phm from (2.70),

0 2 0 hm 0 2 2MoG2(jo)Phm(jo) = I 6(6) (25)( 0)

< .01 = m/K m . (2.73)

The functions on each side of inequality (2.73) are

plotted on Fig. 2.9, from which the minimum w' is read

as w' = 48.6y = 54.5 rps. A smaller oscillating fre-

quency is desired if possible so the limit cycle filter

design steps are carried out. From Eq. 2.57

K e m Mf Xel(jW) Phe(jW)

H(j) = Kmqxo b o Re (jw)Te( ) Phm(j )

1 ; e Q

-5 2 22.77x10-5 10s(s+l) (s+6) (s+25) (s+50)
{22 2.77x10

1 6(25) 2 (50) 2 (s+l0)

(2.74)

Then



S.

a

.* - ,

n/K m  G ( j w) p h m ( j w) l-

MO G. ( j w) H ( j w)P h m ( j w) _

10 w-rps 101 102

Fig. 2.9 Frequency responses for functions
determining lower bound for o .

uO
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Km awb M0 pR(j ()
Xe (j W) Kem I Re (jo)Te (jW) Thee

IXel(jo)l/qx ; X 0

3.6Xxi04-1 - (6) (25) (50) (s+10)
10s(s+l)(s+6) (s+25) 2(s+50)2

Ss+6 . ; .

(2.75)

The next task is to use Eq. 2.75 to calculate A',O

pairs to produce the A vs. w' plot. This is implemented

by getting the phase of Xe using the Bode method [2 7]

followed by inversion to time response using the Discrete
Fast Fourier Transform (DFFT)[28 ,29 ]. Several points

are plotted on Fig. 2.10 and connected by a continuous

curve.

From consideration of the rapid rise in 1 below

30 rps in Fig. 2.10 and the complexity of the required

filter H, a' = 28.2 rps is chosen as a center value of

oscillating frequency that appears achievable. The ideal

filter with 500 db/dec slopes centered at wo = 28.2 rps

is shown in Fig. 2.11. A rational approximation to the

ideal filter is also shown in Fig. 2.11 and has the

parameters tabulated on Table 2.5. Also the plot of

Mo IG2 (j)H(jw)Phm(jw)I has been added to Fig. 2.9.
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-1.0

- I I

i.4-- -- - F

Fig. 2.10 Plot of X vs. ' calculated
0

using ideal limit cycle filter
with 500 db/dec slopes and
y = 1.12.

Poles Zeros

p __ z 5 L

.08 22 .025 25.6

.08 35 .. 04 130.5

K = .838 K = .82

Table 2.5 Parameters of rational
H shown in Fig. 2.11.
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20 30 40 50

Idbal H(j I

--0 -

-. : = 1.22

Fig. 2.11 Ideal and rational
limit cycle filters.

Shown in Fig. 2.12 are time responses of the

original xel(t) from Eq. 2.71 and the resultant xe (t)

after modification by H. Of course some far poles

must eventually be added to Xe(s) when designing the

final loop transmission and these will set x (0) = 0.

With = 1.22 we get Ae /qx = Xab = 22 which is very

close to the peak value of xe(t) shown in the figure.

The design value of Mf G 2 is now obtained by

multiplying the quantity on the right of (2.72) by

X = 1.22, completing the portion of the design to be

demonstrated in this section. Use of the limit cycle
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Fig. 2.12. Time response axel x

el -x

and x (t)/q-- us(t)ing rational/(qx)

time-sec

Fig. 2.12. Time response eXel(t)/ x

and axe(t)/qx using rational

limit cycle filter from Table 2.5.

filter has reduced the oscillating frequency by the

factor 54.5/28.2 = 1.93, or nearly an octave.

The filter in Fig. 2.11 is not quite as deep as it

should be at some frequencies. The maximum error in the

interval Q is about 2.5 db,which will manifest itself

in the completed system design by producing an output

limit cycle in excess of the specification by the factor

1.34. Of course this is only a violation when the plant

has maximum gain K2 = 10.. Note the clear visibility of

the tradeoffs among various specifications. The com-

promises available to avoid redesigning H are a)

allow the larger limit cycle, i.e., set m = .134,

b) demand smaller K2/K1 and reduce IG2 (jw) (Eq. 2.73)
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to bring the limit cycle in tolerance, c) reduce

IG2 (jw) and require smaller inputs, qr < 1/1.3 = .75,

d) reduce IG2 (j) I and attempt to get by with a small

violation of quasi-linearity constraint (2.63b) when the

maximum step input is present. We shall consider the re-

mainder of the system design for this example in

Chapter V.



CHUAPTER III

SATISFYING SOAS SENSITIVITY SPECIFICATIONS

WITH UNCERTAINTY IN PLANT DYNAIMICS

3.1 The Approach

The constrained part of the system, the plant, in

Fig. 3.1 is described by transfer function

P(s,w) = K(W)Ph(s,w); w(3.1)
K(w)E W IK2],

(P(s,w) + K(w)/s e  as Isl - -) with the parameter

bounding sets W, [K1 ,K2], and the plant structure known.

The SOAS property gives zero sensitivity to variations in

F G /H G GH /

.-1-

Fig. 3.1 SOAS structure.

the high frequency gain factor K(w). In this chapter a

synthesis method is given for satisfying fixed specifi-

cations on sensitivity to plant dynamics with a minimum
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bandwidth loop transmission, i.e., a loop transmission

that is optimal in the sense of Sect. 1.4.

The forced signal loop transmission is

M K
Lf = NfGlG2P - GG 2 Ph , (3.2)

A

and the transmission for command inputs is

T = FLf/(l+Lf) ° (3.3)

It is assumed that specifications are given as

bounds of acceptable variation Aln[T(jw)] as a function

of w. A method for satisfying such specifications in

linear systems has been given by Horowitz and Sidi [22 ]

and this method will be adapted to the present problem.

The prefilter F is a fixed transmission so Aln[T(jw)] =

Aln[F(jw)Lf(jw)/(l+Lf(jw))] = AlnLf(jw)/(l+Lf(j))I +

jA/Lf(jw)/(l+Lf(jw)). Similarly, if we assume A/K does

not change with Ph' then Aln[Lf(jw)] = Aln[Ph(jw)]

since the remaining fixed parts of Lf cancel in the

difference. Thus the specifications and plant uncertainty

are both in terms of Lf(jw), viz, Aln[Lf(j)/l+Lf(jw)]

and Aln[Lf(jw)] respectively. The two quantities are

conveniently related on the Nichols chart which has

coordinates of InjLf(j)j vs. Lf(j). For a given

range of plant uncertainty Aln[Ph(j)] = Aln[Lf(jw)],

the specifications A ln[T(jw)] = Aln[Lf(jw)/(l+Lf(jw))]

may be translated into bounds on acceptable Lf(jw). The
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details of this translation are given in Appendix C. A

loop transmission Lf is then synthesized which has

minimum gain-bandwidth while satisfying the sensitivity

bounds.

3.2 The Equivalent Plant Pf for Forced Signals

To apply the method of [22] to the SOAS it is

necessary to write the loop transmission as Lf = GPf,

where Pf contains all the parameter ignorance of the

loop. Pf is the equivalent linear plant seen by forced

signals in the SOAS. From the nonlinearity describing

functions

N = Mo /A (3.4a)

Nf = Mf/A, (3.4b)

the forced and oscillating loop transmission are

L =NG (3.5)Lo  oG 1 G2 KPh, (35)

and

Mf
L = N G2KPh GIG2KPhf F12 h A 12 h

N M
- L . (3.6)

o o

To sustain the limit cycle Lo(j o ) = -1, and using this

in (3.6) gives

A = MoGl ( j o)G j o ) P h (jWo) (3.7)
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If only the plant gain factor changes, A/K in (3.7)

remains constant. However, when the parameters of Ph

change then IPh(jw)I will be changed as well as

h(j) . The phase change in Ph in turn causes the

oscillating frequency w to shift and the net result

is that the right side of (3.7) changes in a rather

complicated way with the varying parameters of Ph' To

obtain an expression for the equivalent plant, A/K from

(3.7) is substituted back in Lf of (3.6) yielding

MfGlG 2PhL = 1G2P

IMo G1( G2(jW0o)G 2 (j 0 )Ph (j

= G M fPh 1
MoG 1 (j0o)G2 (Jw0mo Ph (jiWo)

= GPf (3.8)

where we have defined

G = GIG2 (3.9a)

and

Pf = K Ph MfP h/IMG(j)Ph(jo) . (3.9b)

The quantity Kf = Mf/IMoG(jwo)Ph(jwo) I is a varying

gain factor that is part of the equivalent plant P . For

example, suppose M f/M = 1/2, G = 1/(s+10), and

Ph = 1/[s(s+a)] with a E [1,4]. Then Lf =

Mf/A[s(s+a)(s+10)1. For a = 1, the oscillating
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frequency is determined by Yf(jal ) = -1800 which

gives wI = 3.16. Solving for ILf(j3.16)1 = 1/2

gives Mf/A 1 = 55. Thus Lfl = 55/[s(s+l)(s+10)] and

this function is plotted in Fig. 3.2. Now letting a = 4,

(dea)

220 140o / 100

10/ /
ff2

Lfl

Fig. 3.2 Illustration of gain factor

variation with parameters of Ph'

we get Lf2 = Lfl(s+1)/(s+4) which is shown dashed in

Fig. 3.2. /L2(jw2 ) = -180 gives the new oscillating

frequency at m2 = 6.32, but at this frequency

ILf2 (j'2)I is -20 db so A must change value so that

Lf 2 (ji2 ) = -1/2. Solving, M f/A 2 = 280, and Lf 2

280/[s(s+4)(s+10)]. As a varies from 1 to 4, A varies

by the ratio A1/A2 = 280/55 = 5.1. This gain variation

must be expressed as part of the uncertainty of the loop
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transmission and accounted for in the design to satisfy

transfer function sensitivity specifications. The

magnitude of the gain uncertainty depends on the compen-

sation G, as well as the parameter uncertainty of Ph*

In the above example Lfl((j l ) = Lf 2 (jW2 ) = -1/2 and the

atic f 4-1,r t-r 1-p trarn issi 1-sn giv s A /A

IG(jl 1 )Phl (jl)/G(jw 2 )Ph 2 (jw 2 ) I Thus we write the

equivalent plant Pf as a function of G as given by

Eq. 3.9b. In summary, we have the loop transmission

Lf = GPf, (3.10a)

where

P = K fP h  Mf h/IM G(jwo )Ph(jo), (3.10b)

which is to be synthesized to satisfy given transfer

function sensitivity specifications with minimum band-

width. Due to the constraint Lf(j(o) = -Mf/Mo'

minimizing loop transmission bandwidth is equivalent to

obtaining the smallest possible wo subject to the

sensitivity specifications. Neither w nor G are

known at the outset, while the equivalent plant p
-f

depends on both of these quantities. Thus an iteration

scheme will be implemented whereby we converge to the

minimum oscillating frequency and the required compensa-

tion G simultaneously.
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3.3 Synthesis of SOAS Loop Transmission

to Satisfy Sensitivity Specifications

In this section a method for determining the minimum

bandwidth (minimum w ) L (j) to satisfy given sensitiv-

ity specifications is developed. Assume that bounds on

the acceptable magnitude variation, InjT(jw) , are

given as shown in Fig. 3.3a and b. Also shown in

- In Tmaxi )

InT in (jW)1

(a)

Aln I Ph(j )

01 W2 i n

(b)

Fig. 3.3 Permissible variation of lnIT(jw)l
vs. variation of InIPh(jw)I.

Fig. 3.3b is a hypothetical set of bounds for plant

uncertainty AlnIPh(jw) . In general the loop transmis-

sion is Lf = GPf = GKfPh with Pf dependent on G and
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W0 in the manner given by Eq. 3.10b. However, since

neither of these are known at this point, we first neg-

lect the gain factor Kf of Pf, and use Ph(j) to

obtain a set of bounds for Lf(jw) using the specifica-

tions on AlnIT(jw)I and the method detailed in Appendix

C. Since Lf varies with Ph' the bounds apply to some

reference value of plant parameters denoted by Lfl =

GPhl. The bounds are conveniently displayed on Nichols

B1  Wi

W 
2

-r

-90e o A

-180 (deg)

B2  d -Lfl(wo ) = -Mf/M

Fig. 3.4 Boundaries for optimal Lf(ji).

chart coordinates (InILf(jw) vs. /Lf(jw) ) as shown in

Fig. 3.4 labeled Al,j2, ... n. Lfl(jWi) must lie on or

above the bound at wi in order to satisfy the
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sensitivity specification AlnIT(ji) I. It is noted in

Appendix C that these bounds can also include specifica-

tions on A/T(jwi ) if desired, however, for minimum

phase design the magnitude specification is sufficient.

There are in theory an infinite number of bounds, but in

practice the designer chooses enough frequencies to

provide high confidence that Lf(jw) will satisfy the

intermediate bounds that have not been computed. At some

frequency near, or possibly as much as an octave above,

the AlnIT(jw) , AlnIPh(jw)j crossing in Fig. 3.3b the

bounds will cease to exist or become insignificant

because the permitted variation in In T(jw) i is larger

than that exhibited by the plant, i.e., no feedback is

required in this frequency range. Several other bounds

are shown in Fig. 3.4 whose construction is investigated

next.

In the SOAS we permit only one frequency to satisfy

/Lf(jW) = -180', which is the oscillating frequency w .

Therefore, there is some maximum phase lag boundary, B1

in Fig. 3.4, given by Lf(ji) > m > -1800 which

applies over the intermediate frequency range. In the

next frequency range the bound Bd comes into effect.

This bound is derived from the disturbance response

damping constraint

I Lf (j)

1+L (jW)



The significance of (3.11) has been discussed in

Sect. 1.3. At the oscillating frequency Lf is con-

strained to pass through the point Lf(jw ) = -Mf/M

Of course k in (3.11) must be large enough so that

Bd excludes this point. Above wo, where the final

poles of Lf are introduced, some limit on maximum

peaking is imposed, ILf(jw)J < -A (db) for w > w0.

This gives the horizontal segment of B2 of Fig. 3.4.

Finally, Lf must have some specified excess of poles

over zeros e, so that eventually / ) -90e o

giving the vertical segment of B2.

The boundaries at wl,W 2, ..w n  are applicable to

Lfl only, but they are constructed to guarantee satis-

faction of the transfer function sensitivity specifica-

tions over all possible plant parameters provided the

specific value Lfl satisfies its bounds (and assuming

for the present the gain factor variation in Pf is

negligible). This allows the designer to work only with

Lfl in full confidence that all other Lf will be

satisfactory.

The above is not true for the heavy boundaries B1,

Bd ' and B2 of Fig. 3.4 which apply to all Lf. It is

possible to design Lfl to satisfy these bounds as

indicated by Fig. 3.5, and then find for another plant,

say Ph2' that Lf2 violates the bounds as shown. It

can be seen from Fig. 3.5 that the situation would not be
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improved by using Ph2 as the reference plant to design

with. A reasonable approach to this problem is to choose

Phl as the parameter set that gives maximum phase lag

-90ew n

-180

2. / - LflP h2/Phl

-M /M

Fig. 3.5 Violation of boundary Bd
which applies to all Lf.

over the low frequency band. Then Lfl must be designed

to avoid the higher frequency portions of Bd, B2 by

some margin. The margin can only be found by checking

the remaining Lf(jw).

Finally, one additional constraint is placed on the

oscillating frequency wo. Recall that the describing

function Nf has a valid frequency interpretation over

(0,w / ), where 3 is the quasi-linearity parameter

from Eq. 1.16b. Therefore, to insure the validity of Lf

over the frequency range where sensitivity reduction is

required we require that

S0> 1 n (3.12)
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for al11 Ph_

A summary of properties of Lf(jw) which will be

quite close to optimal in the gain-bandwidth sense of

Sect. 1.4 is given below.

Property 1. Lf(jW o ) = -Mf/Mo for all Ph'

2. WoL n for all P

3. Lf(jw) does not cross the bounds B1, Bd,

and B2 for any Ph"

4. Lfl(jWi), i = 1,2,...n, is on or above

the respective bound at wi. If Lfl(Wi)

is above the bound at wi., then it has the

maximum phase lag permitted by Property 3.

(For example, if Lfl(ji 2 ) has maximum

phase lag of all possible Lf(jw2 ) , then

if Lfl(jW2 ) is above the w2 bound of

Fig. 3.4, it is on B 1 )

5. For w > wn, Lfl(j ) is as close to

bounds Bd and B2 as permitted by

Properties 1. and 3.

These properties follow closely those given in

[22,23] for linear design, but are modified to allow for

the special constraints of the SOAS loop transmission.

They are intended to serve as a guide to the designer

for shaping a real rational loop transmission. A

practical Lfl(jw) might appear as shown by Fig. 3.6.
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B,

2

90e o  A W n
I m

B 8- /18Lf(jw ) (deq)

.ILf l ( i o) = -Mf/Mo

Fig. 3.6 Hypothetical loop transmission

satisfying all boundaries.

Next we consider the gain factor of Pf that has

been thus far neglected. We have

Lf = GPf (3.13)

with

Pf = KfPh = MfPh /IoG(jw )Ph o) I. (3.14)

The sensitivity bounds at wl,W2,..." n are first

obtained by neglecting the gain factor uncertainty in Pf

and using Ph in the manner of Appendix C. Then

Lfl(jw) = GPhl(jA) is designed such that Lfl satisfies
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the sensitivity bounds and all Lf satisfy the bounds

Bl, Bd, and B2. From the design for Lfl the value

of Wo for plant Phl may be obtained, and the com-

pensation is G = Lfl/Phl. With any other plant value

the loop transmission is Lf = GKfPh where

Kf = Mf/IMoG(jw )Ph(jwo)1 is the gain factor required

to satisfy Lf(j o ) = -Mf/Mo. For a significant class

of design problems this gain factor will exhibit very

small variation, and can therefore be neglected com-

pletely. The reason that this is true is that wo tends

to be well above the varying plant dynamics and Ph is

defined with vanishing uncertainty at high frequencies

(see Fig. 3.3b). If it is ascertained that the gain

uncertainty is negligible, then the design of Lf for

sensitivity is complete.

In any particular design problem the gain factor

variation may not be insignificant, in which case we

must insure that the sensitivity specifications are met

with the smallest possible bandwidth loop transmission,

taking the Kf uncertainty into account. From the

design of Lfl above, a function G is obtained. This G

can now be used to calculate Pf for any plant parameter

set, and with Pf we can obtain a new set of Nichols

chart bounds for sensitivity at Wl,W 2,... n . Then we

reshape Lfl as required to satisfy the new bounds,

obtaining a new G and repeating. The above procedure

is summarized in the following design algorithm.
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Algorithm:

Step 1. Choose a reference plant parameter set de-

noted by Phl. Take Pfl = hl and

approximate Pf = Ph for remaining plant

parameter values. Use Ph as the plant for

obtaining bounds on Lfl(ji), i = 1,2,...n

in accord with Appendix C.

2. Synthesize Lfl = GPhl approximating the

optimallity properties given earlier in this

section.

3. Use G = Lfl/Phl to calculate Pf in

Eq. 3.14, and use Pf to obtain new bounds

for Lf(jWi), i = 1,2,...n. Repeat Steps 2

and 3 until the realized Lfl and the bounds

computed using G from this Lfl are

arbitrarily close.

If the gain factor Mf/jMoG(jwo)Ph (JLo)I of Pf

has negligible uncertainty this will be evident the first

time Step 3 of the algorithm is executed and this portion

of the design is complete at that point.

Each time an Lfl is formed it is constrained by

Property 1 to pass through the value -Mf/M0  and the

frequency at this point is the oscillating frequency wo
It will be minimized in accord with how well the remaining

properties are satisfied.

When a satisfactory design has been completed by the
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methods of this section one may check the extremes of

oscillating frequency variation and obtain

O= m o (3.15)
0 V max min

and

h ' o _ ._

' V°-max min

Yh parameterizes the maximum variation in oscillating

frequency due to parameter uncertainty in Ph. This

number is used in the design procedure of Sect. 2.3 to

determine the required width of the notch limit cycle

filter. w' is the minimum center value for oscillating0

frequency permitted by the present design consideration,

i.e., transfer function sensitivity to parameter uncer-

tainty of Ph . However, other design considerations,

e.g., those of Chapter II, may dictate a higher oscilla-

ting frequency.

3.4 Design Example

A numerical design example is carried out below to

demonstrate the design techniques of the preceding

section.
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Spec ific a tins

Nonlinearity:

Ideal relay N = M /A = 4M/7A (3.17a)
with output
level M Nf = M,/A = 2M/TA (3.17b)

Quasi-linearity W 8 3 (3.18)
Constraint 0 - n

In Eq. 3.18 wn is the highest frequency at which

there is a nontrivial sensitivity specification.

Plant:

Ph(S) = ; a s [ala 2 1 = [1,10] (3.19)
s(s+a)

This plant has been deliberately chosen with the

pole variation not confined to the low frequency range so

that it is likely to produce some variation in oscillating

frequency.

Disturbance Response Damping:

L,.(jW)
1< = 2; w (3.20)

1+L (j)

Transfer Function Sensitivity:

The upper and lower bounds for acceptable transfer

functions are shown in Fig. 3.7a below. The lower bound

2is Tmi n = [(6)(25)(50)/[(s+6) (s+25) (s+50)]] . In

Fig. 3.7b the permissible variation in the transfer

function is compared with the existing plant variation or

uncertainty.
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min

-p

'

-20 A

Fig. 3.7a Permissible variation of IT(jw) I.

ci
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fmax Ph ma T- L

min Ph (j) ) l : I i
mh

2 I

-- 0

-5 1 2 4 10 w-rps 46 ib

Fig. 3.7b Comparison of plant variation

with permissible variation of

transfer function.

Design

The first step in the design algorithm in Sect. 3.3

is to obtain bounds for Lfl(jw) using the method of

Appendix C. The forced signal loop transmission is

Lf = GPf r (3.21)

with

MfPhP=KPh = (3.22)
IMf G(jw Ph (jWo0 )

To obtain the initial bounds, the uncertainty of K =

Mf/IMoG(jwo)Ph(jwo) is neglected, and we use Pf = Ph'
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As a reference plant

Phl - - (3.23)
s (s+a l )  s(s+l)

is chosen and the resultant bounds for Lfl = GPhl are

shown as the solid bounds at w = .4,.8,...,4.8 in

Fig. 3.8. Also shown is the boundary Bd due to

Eq. 3.20.

A rational function Lfl is found as plotted in

Fig. 3.8. The plotted points correspond to the boundary

frequencies in sequence, a convention that we shall

follow throughout. The parameters of the compensation G

are listed in Table 3.la and further data on Lf is

Poles Zeros

p _ _ z 

.6 15 3

.4 60 18

.4 100

.5 1.20

K = 21.23 K.= 4.59x1013
o 00

Table 3.la Parameters of G for Lf

shown in Fig. 3.8.

given in Table 3.lb. Lf has been shown dashed on

Fig. 3.8 when Ph = 1/[s(s+10)]. Of course each Lf
must pass through the point -Mf/M ° = -1/2 (-6 db,-1800).



oit
1 

711'
t
I
:
'
;
i
r
j
;
'
 

.
j
.
l
i
'
 

i
i
 il
I
 

Ii.J

Iii 
:ir .

'
 ;
l
i

I
I
 

1
:i 

IL

.
.
.
 .
.

.....

.
.

.
.

.
..............

L
' L

'
~
~
j
 

LIk

;14-1

Ii 
.
.
.
 

i 
I 

01 
011r 0

1
'
 0)

lot 
i 

o
il., 

4

:
[
.
 

i
i
I
!
:
 

M
 

4
 

-
P

S, 
i 

I 
j!I-L

 
I 

:,! 
t, 

.. 
i 

'III

... 
V
A
.
.
.

i 
:Il:la 

w
 

i _! 
.r 

iI 
i 

I
I
 

i 
1
 

1
1
 

ii

.i
I
 

IF 
-:
i
 , 

> Ji'I
J

I  
to 

' 
I
'
 

I 
I,. 

,

1i- l
i
 I i 

Y
'
 
I
_
-
 

g1 
11 

i l

.
.
.
.
.
I
i
,
,
 

.
I
~
 
l
 
i
~
l
,
;
 

;
;

;
i
 

;
!
!
 

i
 :
 ! 

!
,
:
i
 

;ij 
iiri 

i
 li
i
 

!
i
'
i
 

:
 
 
"
 ..
 ..
.

l
l

i 
-1 
i 

tb 
ti 

;1- , ll 
, , 

i 
, I 

lji 
4
,



o K f K K a

16.1 1A 21.23 4.59x1013 1

17.3 1.15 8.11 5.26 3

18.4 1.31 5.56 6.01 5

19.4 1.49 4.51 6.82 7

20.8 1.78 3.77 8.14 10

o' = 18.4 Yh = 1.14

Table 3.1b Parameters of L = GPf
with G given in Table 3.1a.

Obtaining a rational function for Lfl to give a

reasonable fit of the boundaries is a difficult task,

which is largely accomplished by a process of cut and try.

Some help may be obtained by using the average relation-

ships between magnitude slope and phase for minimum phase

functions as explained in [221. The problem here is

considerably more difficult than in linear system design.

For example, in Fig. 3.8 the last sensitivity boundary is

at 4.8 rps while Lfl (jl16.1) = -1/2. If this were a

linear system loop transmission one could add a complex

pole pair, at say 30 rps, having virtually no effect at

4.8 rps and below where the sensitivity bounds are

located. However, for the SOAS loop transmission the same

pair of poles at 30 rps will have a significant phase

effect at 16.1 rps, hence shifting the oscillating fre-

quency. The gain factor is then adjusted so that at the

new oscillating frequency, say wl, Lf l ( w) = -1/2.
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The resultant effect is that L is shifted away from

all the sensitivity bounds.

Next we use the gain factor Kf obtained from the

first compensation G to calculate bounds for the

plant P = KfPho K is listed in Table 3.1b where a

spread of 1.78 (5 db) is noted. The new bounds are

shown dashed on Fig. 3.8 for comparison with those

obtained previously. Note they are considerably lower

allowing a smaller bandwidth Lfl than the first bounds

yielded. The new bounds are shown solid on Fig. 3.9

along with the second iteration for Lfl. Data for this

Lfl is listed on Tables 3.2a and 3.2b. Comparing the

data of Tables 3.1b with 3.2b, the oscillating frequency

Poles Zeros

p W z W

1.5 .6 12 1
.4 60 3
.4 100 18
.4 120

K = 12.7 K = 2.63x1013

Table 3.2a Parameters of G used

for Lf l of Fig. 3.9.
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P Kr K K a

12.9 1,00 12.69 2.63x1013 1

14.2 1.22 5.16 3.21 3

15.3 1.47 3.74 3. 88 5

16.4 1.76 3.19 4.63 7

o' = 16.2 yh = 1.16
0 h=

Table 3.2b Parameters of L using

G from Table 3.2a.

has been reduced by 18.4/16.2 = 1.17 and the high

frequency gain by 4.59/2.63 = 1.74 (4.8 db).

The next set of bounds are obtained using Pf = K Ph
with Kf from Table 3.2b. These bounds are again dis-

played with dashed lines on Fig. 3.9 for comparison with

Poles Zeros

1.8 .7 3.2 1 .45 3.2
.6 11 3.3
.8 50 18
.4 100
.5 120

K = 10.8 K = 1.43x1013
0

Table 3.3a Parameters of G for

Lfl of Fiq. 3.10.
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) Kf K a

11.1 1.00 10.8 1.43 1013 1
12.2 1.21 4.36 173 3
13.1 1.46 3.15 2.08 5
13.9 1.74 2.68 2.48 7
15.0 2.21 2.39 3.16 10

S= 13.4 ~ = 1.17° O - Yh

Table 3.3b Parameters of L using

G from Table 3.3a

with the previous set, and are shown solid on Fig. 3.10.

Data for the next L is given in Tables 3.3a and 3.3b

while Lfl is sketched on Fig. 3.10.

The next set of bounds are calculated using Kf

from Table 3.3b. These are shown dashed on Fig. 3.10,

where it is observed that they are quite close to the

previous set, i.e., the algorithm has converged to an

acceptable G.

Comparing data from Tables 3.1b and 3.3b, the itera-

tion has reduced oscillating frequency by the ratio

18.4/13.4 = 1.37 while lowering the high frequency

asymptote of Lfl by 20log[4.59/1.43] = 10.1 db. This

is a significant improvement that should not be ignored.

It is notable that if the entire plant were P = P

from Eq. 3.19, i.e., no high frequency gain variation,

then the loop transmission required in a linear design

is specified by the bounds in Fig. 3.8. For the SOAS the
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lower bounds of Fig. 3.10 are sufficient. Hence, pro-

vided the remaining SOAS desian considerations allow the

loop transmission to be obtained, the SOAS is superior to

a linear design in this example even without any plant

gain factor uncertainty.

3.5 Additional Considerations in the Ph Parameter

Sensitivity Design

The method of synthesis in Sect. 3.3 which has been

demonstrated in Sect. 3.4 provides the designer with the

means for finding the minimum mean oscillating frequency

Wo permitted by Ph parameter uncertainty, as well as

the uncertainty which is written

E [/h O,/y F h h " (3.24)

Yh may then be used in determining the width required for

the limit cycle filter in Sect. 2.3. There are other

lower bounds for w', e.g., the bound established by the
0'

spread of gain uncertainty in Chapter II. Thus it may not

be possible to achieve the w' dictated by Sect. 3.3.0

When this is the case some freedom is permitted to reduce

the uncertainty parameter yh" The variation of wo is

caused by the phase variation of Ph in the interval Qh"

Recalling that Ph has vanishing uncertainty at high

frequencies (see Eq. 3.1 and Fig. 3.3), any increase in

o can be expected to decrease the wo variation. On0 0

Tables 3.1b and 3.3b in the numerical example of the pre-

ceding section it is seen that a change of w' from 13.40
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to 18.4 reduces yh from 1.17 to 1.14. In addition, for

a change in plant phase AO in the neighborhood of w ',
0

the corresponding change in wo is proportional to the

slope of the loop transmission phase characteristic.

This phenomenon is illustrated in Fig. 3.11, where we see

that it is desirable to make the /f(jw) characteristic

as steep as possible in this neighborhood. When wo' must
0

-1800 logw -180* ' logw

AG AO
-i I-A / - K-i

0 0

Fig. 3.11 Illustration of oscillation frequency

variation proportional to phase slope.

be significantly above the value found from Sect. 3.3,

the frequency range between w and the required w' cann o

be used to shape Lf(j) for w e 0h with a very steep

slope. This is done by removing some phase lag above wn

and then introducing underdamped poles near wo. Fig. 3.12

qualitatively illustrates the appearance of L on

Nichols chart coordinates when the above is implemented.
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Lf (j)

-90e o  ,
- I " I

-180 L (jw) (deg)

B d
J-2

Fig. 3.12 Shaping of Lf to reduce

W variation.
O

The validity of the disturbance damping boundary Bd,

and boundary B2 , is open to question at frequencies above

W / (6 is the quasi-linearity parameter of Eq. 1.16b)

where the forced signal describing function Nf becomes

ambiguous. The conservative approach is to avoid these

boundaries, although it might be shown experimentally that

this is not entirely necessary.

Clearly the synthesis procedure of Sect. 3.3 entails

a considerable amount of design effort, while we have

noted that other design considerations such as adapting

to large gain uncertainty with small limit cycle in

Chapter II may preclude the use of the minimum w' found
o

in Sect. 3.3. Therefore, the designer should ascertain
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approximately the achievable w' to handle gain varia-
0

tion and output limit cycle requirements before carrying

out the synthesis of Sect. 3.3 in detail. In many situa-

tions the tedious design of that section may be avoided

completely, because the gain uncertainty and output limit

cycle magnitude considerations obviously demand a larger

loop transmission.



CHAPTER IV

DESIGN CONSIDERATIONS FOR

DISTURBANCE INPUTS TO THE SOAS

4.1 Satisfying Quasi-Linearity and Output Limit

Cycle Constraints for Disturbance Inputs.

Disturbance inputs are taken as deterministic signals

D applied to the plant output as depicted by Fig. 4.1.

Disturbance signals that act internally, or at the plant

input, can be translated to equivalent signals at the out-

put. The nonlinear element N is characterized by DIDF

D

F G 1/H X G 2H P Z 1
R N C

= "-1

Fig. 4.1 SOAS structure with disturbance input D.

No = N /A (4.1a)

Nf = Mf/A, (4.1b)

when quasi-linearity constraints

maxmax (t) I < A /a (4.2a)t e -e

b < <o/8 (4.2b)

are satisfied. Simultaneously, the limit on maximum mag-

nitude of output limit cycle component,
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M oG2 (jWo )H(j )P h m (jP m ) < m/K m  (4.3)

must be satisfied. In this equation IKmPhm(jWoI =

maX p (jW) )1, where the plant ignorance is characterized

as in Sect. 1.3, Eq. 1.17. Chapter II presented a design

technique to satisfy (4.2) and (4.3) when x (t), thee

extreme forced signal input to N, is due to a command

input R in Fig. 4.1. Here some modifications of that pro-

cedure are considered when x (t) is the forced input to N

due to disturbance D.

The plant output signal due to a disturbance in Fig.

4.1 is

Zf =-DLf/(1+L) , (4.4)

where Lf is the forced signal loop transmission

Lf = NfG 1 G2KPh * (4.5)

Let us take an analysis viewpoint temporarily. Suppose

XR is the forced input at N due to commands and XD is that

resulting from disturbances. From Fig. 4.1,

TR A TR
X = =KR NfG2HKPh KMfG2HPh

AIR FL

K MGHP F (4.6)
KM G 2HPh l + L

where we have used A/K = AI/Kl, and T = FLf/(l+Lf).

For a disturbance input -D, we get similarly,

AD Lf

X1 f 2h +LfD =KIMfG2HPh + L

X DI . (4.7)
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Suppose XR has been designed as in Chapter II (for step

commands and a Type 1 plant), so that the dominant part

of XR is

. xx
X x b (4.8)R S+) bb

The frequency response, IXR(jw) I, is sketched in Fig. 4.2

showing wb < Wo/B, as is often the case because the

limit cycle constraint, Eq. 4.3, forces wo to be high. If

the disturbance inputs : - [D(s)] have approximately the

x R(jw) 1-7 -Ix (Jw)l

qX w b  . 0/ W
Slog

q b o/ (a)
>log 0

1'-{ D(jw)/R(jw)F(ja) I

(b)

Fig. 4.2 Comparison of forced inputs to N
for commands R and disturbances D.

same speed and magnitude as the prefilter output signal in

Fig. 4.1, a-'[R(s)F(s)], due to command inputs, then by

(4.7) the two forced signals at N will be the same, and

will both satisfy the quasi-linearity constraints. Since

xR(t) is slower than required to satisfy (4.2b) (wb <

0/0), we could speed up xD(t) to xD(t) = xR(wot/ wb)

without violating (4.2b). This gives
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SxmbX D(s) / , (4.9)
D s±Q) /8

0

which is also sketched in Fig. 4.2a.

For the system structure being considered here (step

R and Type 1 plant) F tends to be a low-pass filter.

Thus, if D(s) and R(s)F(s) are to be comparable signals

with respect to their propensity to violate the quasi-lin-

earity constraints on N, then D(s) must have smaller band-

width than R(s). In particular, a step D(s) will probably

be an unacceptable input to an SOAS that has been designed

on the basis of step R(s). We now return to the synthesis

problem.

The nonlinearity forced input is obtained in terms of

the plant output signal Zf as

=Zf
zf

Xf GHKP (4.10)
f NG2HKP h

with

Zf = RT = RFLf/(l+Lf) (command input), (4.11)

and

Zf = -DLf/(l+Lf) (disturbance input). (4.12)

When there is plant uncertainty there is some extreme set

of plant parameters Phe which produce the extreme Xe

due to disturbance input -D , so that

Ze = DL fe/(l+L fe) (4.13)e e fe fe *(.3

In view of Eqs. 4.10 thru 4.12,the synthesis procedure

when Ze  and Xe  are due to a disturbance input is
e e

exactly the same as explained in Sect. 2.3 when X ise
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due to a command input, except that in all the equations

of that section Z = R T is replaced by Z =e ee - e

DeLfe/(+Lf e). Thus we can parallel many of the equat-

ions from Sect. 2.3 in the following. Beginning with

A = weqxb , (4.14)

we get

X AZ
X = el ee

e H MfG 2HKe Phef 2 e he

qx be fe
MfK G HP (l+L ) ' (4.15)Le 2. he fe

and

x wbDe Lfe qx bX =Dq (4.16)el M f eG2Phe(l+Lfe) s+mb  x

qx and wb are parameters of Xe due to a disturbance, and

the chosen form for Xel on the right of (4.16) is approp-

riate only if De has one pole at the origin. Recall that

Lfe(jW o ) = -Mf/Mo. Using this, solving for G2 from

(4.16), and substituting in (4.3) yields

j el (jWo

JA A H(jw )Ae  e o
e

K IM P (jW
> K ID e(j ) hm o0. (4.17)

e f- ID(J) IPhe(J)

This is the equation corresponding to (2.56), but now

applying to Xe generated by a disturbance input.

Suppose De = cd/s, and no limit cycle filter is used

so H = 1, and max (t)l = q giving A =aq
Then (4.17) reduces approximately toe xbThen (4.17) reduces approximately to
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> UK .MoIS+Xb . y - K m M M 0 8
>-- Kem l f- ~o

or approximating I Ji o+)b I o we get

KmM -Ml
d _K KIM - (4.19)

m o

For step D and H = 1, there will be a value of w

satisfying (4.17) only if the step magnitude satisfies

(4.19). In other words, without a limit cycle filter the

system will only tolerate very small step disturbances

and continue to operate in a quasi-linear fashion. For

example, using numbers from the design of Sect. 2.4,
i.e., Ke/K m = m = .1, a = 3, and I(M f-M O ) /MO  = 1,

yields qd < .0033. This is smaller than the smallest

value of limit cycle magnitude, which has peak value

m/K m = .01.

Continuing with the design equations (which are not

just valid for step De , but for any De with one pole at

the origin), we assume that wo can vary in

0w [ '/y,w'y] = i. (4.20)
O O

Solving for IH(jw)j from (4.17),

Kem M -Mo I Xel(jW) Phe(J )

IH(jW) = Kmx bM Dj I m ) ; (4.21)

Again taking De = qd/s, we get IH(jw) I KemlMf-Mo0 l/
[KmAtqd IMo ] for w E 0, which is entirely given by

specifications and is independent of the choice of w .
o

If De has at least one additional finite pole, then the
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right side of (4.21) will increase with w and the higher

the choice of o , the less depth required in H(jw). In

any event, the design problem is to find a suitable com-

bination of to, I, and H(jw), and this is accomplished

by iteration on wo and A in precisely the manner exp-0

lained in Sect. 2.3 when the extreme X is due to a
e

command. The only difference is that a new defining

function for H(jw), (4.21), is used. If no narrow limit

cycle filter is used, then the minimum permissible

oscillating wo/y is the smallest frequency satisfying

(4.17) with H = 1.

Suppose now that w', X, and H have been found. How
0

is the design completed? Solving Eq. 4.15 for G2 gives

Aaq WbD L
x be fe

G = (4.22)2 MfK X lPhe(l+Lf) *

We cannot determine G2 uniquely until Lfe has been

designed. Lfe can be designed in the manner detailed in

Sects. 3.3 and 4.2 to satisfy both parameter sensitivity

and/or disturbance attenuation specifications over the

low and intermediate frequency bands, while constraining

it to satisfy Lfe(jwo) = -Mf/Mo at the wo selected

above. When Lfe is thus obtained, G2 is completely

determined and G1 is solved from

G /q x  b .fe (4.23)
feG2 he

Lastly, the prefilter F is obtained in the same manner as

in Sect. 2.3 as
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F - T (1+Lfe)/Lfe (4.24)Te f. !:

This completes the synthesis steps for the case when

minimum w is determined by the need to satisfy quasi-

linearity constraints (4.2) and output limit cycle con-

straint (4.3) with a disturbance input.

We have seen that the constraints of this section

are difficult to satisfy (if they can be satisfied at

all) when the disturbance inputs are steps. However,

this will not always preclude the use of an SOAS when

step disturbance inputs are present. Usually one is

more interested in simply attenuating the effect of the

disturbance at the system output, rather than shaping

the disturbance response function in any particular

manner. Therefore, it may, in some cases, be acceptable

to design the system so that it remains quasi-linear for

all commands, but operates nonlinearly for some distur-

bance inputs.

4.2 Design to Satisfy Disturbance

Attenuation Specifications

As suggested in Sect. 1.4, specifications on the

maximum disturbance transmission magnitude as a function

of frequency may be given. The synthesis scheme for

satisfying such specifications is considered below, and

shown to be a simple extension of the technique used in

Chapter III for sensitivity specifications.

We assume the bounded plant ignorance
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P(s,w) = K(w)Ph(s',w ) ; (4.25)(K (w) E:[ K K 1  '

with P(s,w) - K(w)/se as Isl m, and the bounding

sets W, [KlK 2 ] , and the plant structure known. As

derived in Sect. 3.2, the equivalent plant for forced

signals (command or disturbance) is

Pf = KfPh , (4.26)

where

Kf = Mf/IMoG(jwo)Ph(jwo) , (4.27)

when the forced signal loop transmission is written

L = NG G2KPh = GP . (4.28)

From the system structure of Fig. 4.1 the disturbance

transmission to the system output is

1T . (4.29)
D 1+L=

Specifications are taken as an upper bound on InITD(jW) I

vs. w, which is to be satisfied over the range of par-

ameter ignorance for the equivalent plant Pf* The

specifications on InITD(jw) = lnll/(l+Lf(jW)I is

easily translated to a set of boundaries on Lfl(jW) =

G(jw)Pfl(jw) when bounds on the ignorance of Pf are

known. The method for doing so is explained in Appendix

C. As in the sensitivity design, the ignorance in Kf is



not known at the outset so it is neglected in finding the

first set of bounds for which Pf Ph is used. The net

result is a set of Nichols chart bounds for Lfl. Once

such bounds are obtained the design procedure for finding

an optimal Lfl satisfying them is exactly the same as

given in Chapter III to satisfy sensitivity bounds. In

fact, if both sensitivity and disturbance attenuation

specifications are given, the design should be carried

out to satisfy both simultaneously. At any frequency,

say wi, a boundary, B in Fig. 4.3, for Lfl (j i) is

obtained by the technique of Appendix C to satisfy the

sensitivity specification. Similarly the boundary Bd of

-4
0 s B d

m

L (jw)

Fig. 4.3 Composite boundary for Lfl(jWi)
due to sensitivity and
disturbance specifications.

Fig. 4.3 is obtained from the disturbance response

specification for the same Lfl (jWi ). Then the boundary

with greater ILfl (ijwi) must be respected to satisfy both
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sensitivijty and disturbance response specifications.

Henge, the only alteration of the design technique in

Chapter III is in the calculation of the bounds for

Lfl (jwi)o



CHAPTER V

EXAMPLE OF SOAS DESIGN AND SIMULATION

5.1 Design Specifications

Listed below are the necessary specifications for

a complete SOAS design in the context of this paper. It

will be evident that the specifications are selected to

take maximum advantage of the design efforts previously

invested in Sects. 2.4 and 3.4.

Structure

The design will be implemented with the same feed-

back structure of previous sections, shown again in

Fig. 5.1.

D
F GI/H X G2H P

R - J > N : C
1 X 2

-1

L WC

Fig. 5.1 SOAS structure.

Nonlinear element (saturation)

The nonlinear element is taken as a saturation with

parameters of the characteristic defined by Fig. 5.2.

The DIDF is



N = M /A = 4M/rA (5.1a)
0 0

N = M f/A = 2M/A, (5.1b)

with quasi-linearity constraints

maXlx(t)I < A/a; a > 3 (5.2a)

Wb < W/8; 8 > 3. (5.2b)

M __ 2 _=

Input
6 =

0

Fig. 5.2 Saturation characteristic.

Plant

The plant is specified by

PaK a~ [ala 2 ] = [1,10]

P(s) = KP h(s) =(s+a) K [KK 2  = [1,10;K [1Kl,K 2 ] = [I,10]

(5.3)
where a and K are uncorrelated.

Disturbance responsedamping

To avoid excessive overshoot and ringing due to

disturbance inputs the specification

Lf (jW) < Z = 2; W (5.4)
1+L f(jW) -V
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is imposed. This specification was discussed in Sect.1.3,

Eq. 1.18. The disturbance inputs are assumed sufficiently

small that no specific transmission requirements are im-

posed, and also that such inputs will not intolerably

.violate the quasi-linearity specifications.

Transfer function and sensitivity

The transfer function magnitude must lie between

the bounds given in Sect. 3.4, Fig. 3.7a, repeated here

as Fig. 5.3 for convenient reference. These bounds

establish both sensitivity and the absolute level for

IT( j w) .

Extreme command input

The extreme (largest and fastest) command input

anticipated is

Re(s) = qr/s; Iqr = 1. (5.5)

Output limit cycle magnitude

The maximum output limit cycle magnitude over all

plant conditions is

m = 0.1. (5.6)

Note that this is a 'peak' value.

Oscillation frequency uncertainty

We assume in the absence of plant uncertainty the

oscillation frequency may vary by + 6% due to parameter
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1 I'

11 I : II W !

lb 4

Fig. 5.3 Specification envelope for IT(jw)I.

variation in the compensating elements. Thus

; [w/ , y / l] = y = 1.06, (5.7)

when the plant parameters are fixed.

5.2 System Design

The first step is to determine the minimum oscilla-

iii1 L ' "i ll

ting frequency allowed by the transfer function sensi-

tivity specification. This has been done in Sect.3.4,

A : ] , , H id ~ -..< ,,i!l i

' Il I:,i ... , ' !'L ill
I~i' I ' ' ' '  ]] ' :7 tt~l [td ,

tlV,~~~ ~~~ Hi:., i i ..... i

1 -1" L1l;

varitii on2Ln i .thei copnstn elemnts Thus

W!. . 0t EI~ :.i.ll [W c-t-i-= -#.1. 6,(5 7

The .fli ~iiiirst ste ,,, todtrieh iiumocla

ti iy s . pecification shsenoe r I eT.)I-
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and the minimum frequency found to be o = 13.4rps with

variation parameter due to plant uncertainty of Yh= 1.17.

The data for this minimum bandwidth sensitivity design

is given on Tables 3.3a & b.

Next the combined constraints of quasi-linearity

(5.2) and output limit cycle limit (5.6) are considered.

This part of the problem with the present specifications

was treated in Sect. 2.4. There it was found that

' = 28.2 rps is an achievable oscillating frequency
O

with a moderately complex limit cycle filter H, which

is significantly better than is possible without the

filter. This value of course takes precedence over the

smaller value demanded by sensitivity.

Before proceeding with the design we need to con-

sider two additional requirements on the oscillating

frequency. First, recall that w must be high enough so

that the assumed Nf is appropriate over the transfer

function bandwidth. Fig. 5.3 shows that this bandwidth

is permitted to range over approximately [4,13] rps.

However, the actual variation will be considerably less

because of the inherent SOAS property of removing

nearly all high frequency gain variation (of course at

high frequency N is ambiguous anyway, but the effect

extends to the intermediate frequency range also). The

crucial question is does the transfer function vary from

4 rps upward, or from 13 rps downward. The former is
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true in the present problem because in Sect. 2.4 the

extremes of plant and transfer function Te and P he'

used for the extreme Xe were the small gain-bandwidth

cases. Thus wo = 28 rps is judged to be sufficiently

0

high for transfer function bandwidth requirements.

Lastly, wo must be large enough to render the

sensitivity design meaningful. There is little question

that 28 is sufficient, since the last sensitivity

specification was at about 3 to 5 rps (Fig. 3.10). Thus

we proceed to design for = 28 rps.

The design value of Mf G2 was determined in

Sect. 2.4, and is obtained by multiplying Eq. 2.72 by

the appropriate X = 1.22 found in that section. The

parameters are listed on Table 5.1.

Poles Zeros

6 10
25

25

50

50

K = 220/Mf K = 2.06x10 8/Mf

Table 5.1 Parameters of G2 .

Now G1 must be obtained such that the Nichols chart

sensitivity boundaries are satisfied over the low and



intermediate frequenr.y ranges, and so that the limit

cycle is established about the chosen nominal 28

rps. For this purpose it is easier to work with the

entire loop compensation G, defined in Sect. 3.2 as

GIG 2 , and the forced signal equivalent plant Pf, i.e.,

Lf = G Pf (5.8)

MfP hP= Ph K P (5.9)f M G(jw )Ph (j O) f h*

A function for G which satisfies the sensitivity

bounds, but sets w too small, is available from

Table 3.3a. This function is modified, primarily by

moving the complex pole pair near w up in frequency,

enough to establish the new center oscillating fre-

quency near 28 rps. This is again a cut and try process

and the result is tabulated on Table 5.2. By increasing

w' significantly the spread of w variation is
0o

Poles Zeros

.4 60 18

.4 100

.5 120

K = 24 K = .26x10
0

Table 52a Parameters of G for Lfl
shown in Fig. 5.4.
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0°  Kf K K a

26.9 1 24.0 1.26x10 1 4  1

27.6 1.03 8.26 1.30 3

28.4 1.07 5.14 1.35 5

29.1 1.11 3o82 1.40 7

30.0 1.19 2.85 1.49 10

wo = 28.4 Yh = 1.057

Table 5.2b Parameters of L using G

from Table 5.2a.

considerably reduced, as is the spread of Kf variation;

both may be checked by comparing data from Table 3.3b

and 5.2b. Recalling the iterative procedure for satis-

fying the sensitivity bounds, from Sect. 3.3, the new

G has to be checked and possibly adjusted somewhat to

insure that the final Lfl satisfies the bounds corre-

sponding to the final G. Here only the completed design

is given with the data of Table 5.2 and the plots on

Fig. 5.4. In this figure Lfl = GPhl with

Phl = 1/[s(s+1)]. Frequency responses of L for

several values of Ph are given in Fig. 5.5.
M

To extract G, Lfe = GPfe = GK fePhe- K G2P he.
e

Thus

AeKfeG qx lmbKfeG
G KG = KG (5.10)

KeMfG2 KeMfG2

Recall that Ae = aXq xwb is the value of A when the

plant is P = KePhe, where K = 1 was used for thise he e
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design in Sect. 2.4. Kfe is the Kf from Table 5.2b

that pairs with Phe = 1/[s(s+10)] used in Sect. 2.4,

i.e., K = 1.19. Also from Sect. 2.4, X = 1.22fe

and b = 6. MfG2 and G are given by Tables 5.1 and

5.2a respectively. Collecting the data, G1 has the

parameters tabulated on Table 5.3. For completeness

Poles Zeros

p _ w z w

10 .5 27 4

.4 60 6

.4 100 18

.4 120 25

25

50

50

K = .95qx K = 5.32q xX10 6

5= .13A e  = 7.27Ae x10

Table 5.3 Parameters of G1 .

the parameters of H are given in Table 5.4.

The system prefilter F is obtained from

F = Te (l+Lfe)/Lfe, (5.11)

where

(6)2(25)2 (50) 2

e (s6 2 5) (5.12)
(s+6) (s+25) (s+50)
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Poles Zeros

p W i z W

.08 22 .025 25.6

.08 35 .04 30.5

K = .838 K = .82
o a)

Table 5.4 Parameters of H.

This Te is the lower bound in Fig. 5.3 and the ex-

treme transfer function used in Sect. 2.4. The para-

meters of Lfe/(l+Lfe) are listed in Table 5.5. One

Poles Zeros

p W z W

1.88 .194 28.3 4

12.7 .511 64 18

.379 98

.499 121

K = 1 K = 1.49x101 4

Table 5.5 Parameters of Lfe/(l+Lfe)

finds F in (5.11) with 10 zeros and 8 poles, hence

unrealizable. We assign additional pole pairs to

Xe and Te at 98 and 121 rps with damping factors to

cancel these zeros of 1 + Lfe* These poles are

sufficiently far off that they should have no appre-

ciable effect on the time responses x f(t) or c(t).
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Poles Zeros

P 1 W z W

4 1.88 .194 28.3

6 12.7 .511 64

6

18

25

25

50

50

K = 1 K = 51.7
o 00

Table 5.6 Parameters of F.

The resultant prefilter is given by Table 5.6. The

design is now finished, with all functions in Fig. 5.1

completely identified except for the selection of qx

or Ae .

Before proceeding to simulation of the completed

design we can do some verification by using the quasi-

linear model, i.e., we calculate the linear response

functions for Fig. 5.1 when N is replaced by the

gain factor Mf/A. The particular A that goes with a

given plant is accounted for by using the appropriate

gain factors from Table 5.2b. First the transfer

functions T(jw) are calculated and the magnitudes are

shown by Fig. 5.6. In this figure the lower response

(a = 10) is identically Te which is also the lower



-. 0 -10

.3.5- -- -
*3 .

//-/

* .5 .... . . . . , . .. . .

10 100 w-rps 10 102

Fig. 5.6 Equivalent linear transfer functions
for several plant values.

CIJ
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bound in Fig. 5.3. The upper bound (a = 1) is very

close to the upper bound of Fig. 5.3 up to about 5 rps

and then falls below the specification bound. Thus our

goal of barely achieving the sensitivity specifications

is met and not exceeded except at higher frequencies

where it is unavoidable (and where T(jw) is ambiguous).

Finally we verify that the bandwidth, -3db point , lies

within [3.5,7.5] rps which seems compatible with

i = 28 rps.

Shown in Fig. 5.7 are the system outputs c(t),

which will be useful in evaluating simulation results

later. For a = 1 the overshoot is rather large

(= 35%), but this is permitted by the transfer function

specifications.

Next, shown in Fig. 5.8 are several xf(t). From

these we can check the validity of the selections made

for Phe and Te when designing the limit cycle filter

in Sect. 2.4, i.e., does the a priori selection made

truly yield the largest and/or fastest xf(t). Figure

5.8d permits easy comparison. At small t they are

identical since for large w in the frequency domain

the Xf(jw) are identical. For larger t the de-

signed Xe(t) (a = 10) consistently has larger magnitude

peaks than the remaining two signals. It does not seem

possible to detect any meaningful difference in speed

of the xf(t) by simple inspection of Fig. 5.8.
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a- 1
3

2 _ 107

time-sec

Fig. 5.7 c(t) obtained with unit step input and
transfer functions in Fig. 5.6.

I.e

-.s = 0

time-sec

Fig. 5.8a Design value of extreme xe(t).
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-1

-e.e

-.!

0.1

(b)

.e 5 -A t l u f)

*.8 --- --8.6

-a =

-1  'I

time-sec

(c)
Fig. 5.8 (cont) Additional values of xf(t).



- a = 10

.e

-2.

time-sec

Fig. 5.8d Simultaneous plots of xf(t).

The conclusion drawn is that the selections of Phe'

Te  are quite satisfactory. However, the change in

xf (t) with Ph in the present example is rather small

so the selection of Phe is probably not a critical

factor in this design. Note that the proper pairing of

Te with Phe is verified by Fig. 5.6. That is, we

designed the transfer function Te on the lower speci-

fication bound so that for values of Ph other than

Phe' IT(jw) should increase, as it does in Fig. 5.6.

Finally let us compare the resultant xe (t) in Fig.5.8a

with the design value in Sect. 2.4, Fig. 2.12. The two

signals are identical after an initial transient in



Fig. 5.8a which is the effect of the added far poles.

This transient does exceed the Sect. 2.4 design value

of amaxIX (t) = 22. by about 35%. This narrow pulse
t e

should not cause any appreciable effect on the output

c(t), because even if the nonlinear element does trans-

mit it, the smoothing effect of the plant integrator

will essentially remove it from the system output.

5.3 Digital Simulation of Command Response

The system design of the previous section was

simulated using the MIMIC digital simulation language

as adapted for the CDC 6400 computer.

It is noteworthy that the simulation was first

attempted with an ideal relay nonlinearity. In propa-

gating the limit cycle through the ideal relay the zero-

crossing times must be detected with rather high accur-

acy, and errors in the detection produce low frequency

transients, or ideally subharmonics, in the nonlinearity

output signal. The difficulty is highly accentuated

in the oscillating system because of the extremely high

low frequency gain compared to the gain at the limit

cycle frequency w0 (see Fig. 2.9) between the non-

linearity output and the system output. This causes the

low frequency error terms to be greatly amplified at

the system output, and these components swamp out the

limit cycle signal. The net result was that an



132

extremely small digital simulation integration step size

was required, making the simulation very expensive in

terms of computer running time. This difficulty was re-

moved by changing the nonlinear element to a saturation.

For an ideal relay with output level M the output

error is 2M when the simulation fails to detect a zero

crossing. For saturation, the output error will be pro-

portional to the time increment by which the z.ero-cross-

ing is missed, and therefore reduces rapidly with inte-

gration step size, making it possible to execute the

simulation at reasonable cost. The lesson of this

experience is that, although the synthesis is independent

of the particular nonlinearity used, there will indeed

be practical considerations that give some nonlineari-

ties advantages over others in a given application.

Shown below are simulation results using a satura-

tion nonlinearity with the parameters listed on Fig.5.2,

and using qx = 1, Ae = Xaqxwb = 22. The system input

is a unit step Re(s) = q r/s = 1/s in all cases.

Fig. 5.9 shows the output from prefilter F of Fig.5.1.

This signal is of course the same for all plant parameter

cases. Figure 5.10 shows the nonlinearity input signal

for two parameter cases. The forced signal component

xf(t) is essentially indistinguishable in these plots.

The system output c(t) is shown for several plant

parameter cases in Fig. 5.11. Comparison of these step
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responses with those of Fig. 5.7 shows that the non-

linear system response closely approximates the response

of the quasi-linear approximation used in synthesis.

The specified limit cycle magnitude has been scaled on

several plots of Fig. 5.11 and shows satisfactory agree-

ment with the observed limit cycle.

c

-,

'44

O..0 .43 .64 1.20 1.2 2.15 2.S 53.01 3.44 3.17

time-sec

Fig. 5.9 Digital simulation plot of
prefilter F output.
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I'
K= 1
a 10

a= I

o

-P
N.

4.00 .3 .l6 0.29 t.72 2.05 2.58 3.01 3.44 3.37

time-sec

Fig. 5.10a Digital simulation plot of
nonlinearity input function.
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K=10 a= 10

OC)
O

-P-

.ee .43 .84 1.20 t.72 2.00 Z.S .01 S.G4 S.07?

time-sec

Fig. 5.10b Digital simulation plot of
nonlinearity input function.
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K= 1
a = 10 /

.9

I

2mK/10 = .02

-1, I

1_- Ii sec

4.00 .43 .a6 1.Za 1.72 2.15 2.5 1.01 3.44 3.07

time-sec

Fig. 5.11a System response to unit step
applied at t = 1. sec.
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K= 1
Ag-- --- -- -

a=!

1.0

I_ ' 1.6 sec

"I - .45 sec

0.0 .43 .6 1.2) I 1.2 2.15 2.51) ~.01 3.44 3.97

time-sec

Fig. 5.11b System response to unit step
applied at t = 1. sec.
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K= 3
a = 10 a A/ AA

A-

4 2mK/10 = .06

..1 .3 .S 0 1.8 0. 8.10 2.8 aO0 b.44 1.?7

time-sec

Figure 5.11c System response to unit step
applied at t = 1. sec.



K= 3
a= 1

.,0 .43 .86 ,. t.72 .S 2.65 3.0 13.4 3.,?

time-sec

Fig. 5.11d System response to unit step
applied at t = 1. sec.
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K = 10 A A A A h Aa = VVVVV

I
4-)

S 2 mK/10 = .2

.** .43 .84 1.2* 1.72 2.16 2.56 1 .01 3.44 1.87

time-sec

Fig. 5.11le System response to unit step
applied at t = 1. sec.



K= 10
a- 1

-Pi

0.0 .43 .06 1.28 1.72 l2.15 2.8 3.00 3.44 31.7

time-sec

Fig. 5.11f System response to unit step
applied at t - 1. sec.
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5,4 Digital Simulation of Disturbance Response

This section presents some disturbance response sim-

ulation results obtained from the system design of Sect.

5.2. Any evaluation of these results must be rather

qualitative, since the design does not conform to any

specifications on the disturbance response. Nevertheless,

they do provide useful information about system perform-

ance for disturbance inputs. All simulations were per-

formed with P(s) = K Phe(s) = 1/[s(s+10)], because this

parameter set is the worst case in terms of magnitude

quasi-linearity constraint (5.2a).

It is obvious from the treatment in Chapter IV that

the system will not be quasi-linear in the presence of a

unit step disturbance. Regardless, a unit step input,

D = qd/s = -1/s in Fig. 5.1, was simulated and the

resultant system output is shown in Fig. 5.12. In Fig.

5.12b the disturbance input is applied at one half the

limit cycle period (/w g) later than in Fig. 5.12a.

The radical difference in the two responses demonstrates

the well known phenomenon that the oscillating system

response is time dependent when the quasi-linearity con-

straints are violated. Both responses exhibit a predom-

inant time constant T which is believed to be the time

required to return to quasi-linear operation. Later plots

show this time constant to be dependent on the magnitude

of step input. Both responses of Fig. 5.12 appear quite

undesirable for most applications.
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Next, a smaller step, qd = -. 025, was simulated.

The magnitude of this input was obtained by using the

design values of Xel' Phe' Phm' H, and other required

parameters from this chapter in Eq. 4.21. Evaluating

this equation at wo = 30 rps (corresponding to Phe from

Table 5.2b), the given qd is obtained. This does not

gaurantee quasi-linear performance however, because the

present design values of GI, G2 , and H have not been

selected to produce quasi-linear operation for any step

disturbance input. In Fig. 5.13 the frequency responses

of the forced input to N are compared for Re = 1/s and

De = -.025/s. It is observed that the signal due to De

is rich in frequency components above w . This will be

the case irrespective of the step magnitude, i.e., a step

disturbance input can be made small enough to satisfy the

magnitude quasi-linearity constraint, but the frequency

constraint cannot be satisfied. Fig. 5.14 shows simu-

lated outputs for the input De = -.025/s. These exhibit

time dependence and overshoots an order of magnitude

greater than the input, hence they are quite undesirable

responses.

We know that if the signal f(t) E~ 1[Re(s)F(s)]

is applied as a disturbance input, then x e(t) will be

the same as for command inputs. The signal f(t) is

shown in Fig. 5.9. This signal was time scaled to inr

crease its speed by factors of /J and 2, and applied as
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a disturbance input in the digital simulation. The sys-

tem outputs obtained are shown in Fig. 5.15, and appear

quite reasonable.

d(t)

K = 1
-Pa =10

D(s) = -1./s
(applied at
t = 1 sec.)

9.00 443 .0 9.2. .?2 2. L S. 8.01 .64 8.07

time-sec

Fig. 5.12a System output for unit
step disturbance.
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K= 1
a =10

D(s) = -1./s
(applied at
t = 1. + 7/W

= 1.104 sei.)

d(t)

o0. .5 . 6.s8 ,.t7 2.,0 3.88 8.0 set a .Lt

time-sec

Fig. 5.12b System output for unit
step disturbance.
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-. I... . XD(jw) = I.025XR(iw)/F(j )I

-H

- *e. ... N t m w ew N m o-* M 1* 0 .e

10- 1 100 w-rps 101 102 10

Fig. 5.13 Comparison of nonlinearity forced signal input
for step command and disturbance system inputs.

ONa
Fig.5.1 Coparion f nnlinariy frcedsigal na'



d-W
d(t)

K=1
a = 10

SD(s) = -. 025/s
(applied at

o t =1 sec.)
o

,.1 .43 . ,t I.Z 1.72 2.l5 .S 1.01 3.4 3.7

time-sec

Fig. 5.14a System output for step
disturbance input.
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K= !

D(s) = -.025/s
(applied at
t = .. + u/

= 1.104 se0.)

4J

r-I

d(t)

* * .43 1 .28 1.73 8.18 t. 801 44 LIS.

time-sec

Fig. 5.14b System output for step
disturbance input.



K=1
a = 10

d(t) = f (/t)

oOS .43 .00 t.za 1.72 8o. L.BS O.1 i .44 3.OT

time-sec

Fig. 5.15a System response to
disturbance f (f2t).



150

K=1
a = 10

d(t) = f(2t)

o
r-P

o .43 .0o 1.25 3.72 2.358 2.58 2.5 L.4 1.57

time-sec

Fig. 5.15b System response to
disturbance f (2t).



K=1
a = 10

d(t) = f(2t)/2

r4

5.11 .45 .35 1.25 1.72 2.15 2.50 1.5 3.44 3.07

time-sec

Fig. 5.15c System response to
disturbance f(2t)/2.



CHAPTER VI

SYNTHESIS OF AN EXTERNALLY

EXCITED OSCILLATING ADAPTIVE SYSTEM

6.1 Introduction

It is possible, with the proper type of nonlinear

element:, to externally excite the oscillating signal

which circulates in an oscillating feedback system rather

than using the limit cycle which occurs naturally in

the SOAS. Such a system, discussed below, will be termed

an externally excited oscillating adaptive system (EEAS).

The two degree-of-freedom feedback structure to be used

is depicted in Fig. 6.1. A o  is a zero mean periodic

excitation signal of frequency wo which we take to be

sinusoidal. This input need not be sinusoidal provided

G 1G 2P is of sufficient low pass character to maintain

the validity of the describing function used for N.

F, G1 , and G 2 are linear time-invariant compensations

to be synthesized, and P is the plant or constrained

A D
0

F G1  X G2  P

-1

Fig. 6.1 EEAS feedback structure
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part of the system for which parameter ignorance as

detailed in Sect. 1.3, Eq. 1.17, is assumed. The general-

ity and limitations of this structure have been pointed

out in Sect. 1.3.

System performance specifications and optimization

criterion for the EEAS are identical to those taken for

the SOAS and stated in Sects. 1.3 and 1.4 respectively.

With the exception of one new constraint, to be de-

veloped in the following section, it will be observed

that the EEAS synthesis methods developed below in large

measure parallel those for the SOAS.

6.2 EEAS Nonlinear Element

At the outset it is required that the nonlinear

element N in the EEAS possess all the properties re-

quired for the SOAS. These properties were treated in

Sect. 1.2. In particular it is necessary that the DIDF

components

NO  M /A (6.1a)

f Mf /A (6.1lb)

represent a satisfactory quasi-linear approximator when

maxlx (t) < A/a, (6.2a)

and

b < o/8 . (6.2b)b - 0
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All quantities in the preceding two equations are as

previously defined, e.g., in Sect. 1.2, Eq. 1.7 and 1.8.

If Ao is zero or sufficiently small in Fig. 6.1,

and the loop transmission has in excess of 1800 phase lag,

then the system will self-oscillate. Indeed, with A = 0,

we have the SOAS treated in the preceding chapters. Thus

if the DIDF in (6.1) is to be used, the system must be

synthesized under conditions that prevent the occurrence

of the natural limit cycle, i.e., there must be only one

sinusoidal input at N. We shall give sufficient condi-

tions for limit cycle quenching below.

Assume there are two sinusoidal inputs to N

giving x(t) = A sin wot + B sin w t, where w is the

limit cycle frequency and w is the frequency of the

excitation A . Using the techniques of Sect. 1.2, the

two sinusoid input describing function (TSIDF) may be

calculated by repeated application of Eq. 1.4b, and the

components labeled NA(A,B) and NB(A,B). Letting LB

denote the loop transmission seen by the B sin w t com-

ponent, the limit cycle will be quenched provided

ILB(jw ) I < . (6.3)

Suppose that ma IN (A,B) I - (A) exists and is finite.

Then the limit cycle quenching condition may be written

E(A) IGl(Jw )G 2 (jw )P(j )I < 1;V p. (6.4)

In general this condition may be quite complicated to
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satisfy. A survey of a few odd, statice single-valued

nonlinearities seems to indicate the following. For

nonsaturating nonlinearities (A) does not exist.

However, these are of no interest because their DIDFOs

are not of the form required in (6.1). For three satur-

atiAg nonlinearities (ideal relay, relay with dead zone,

and saturation) whose TSIDF's are plotted in [14], E(A)

has the characteristic shown in Fig. 6.2, and asymptotic

value E(A) /A where ( is a constant. The de-

parture from the

p- /A

A

Fig. 6.2 Character of maxINB(A,B)I = (A).

asymptote occurs when A is so small that the nonlin-

earity is rapidly changing character, e.g., saturation

when A is so small that the element is linear. For

the ideal relay with output M, E(A) = /A = .855M/A for

all A > 0 [15. We restrict the EEAS synthesis theory

to nonlinear elements such that i exists and E(A)<*/A

for all A > 0. Using this restriction



156

TG(jw)GJ ) jw )P ) I < 1 (6.5)

is sufficient to quench the limit cycle and DIDF theory

may be applied. Defining Mo / E p and recalling the

oscillating signal loop transmission is L0 = NoGIG 2P =

M

A- GlG2 P we get

IL (jw )j < p, (6.6a)

or

ILf(j ) I < PIMf/Mol 0 1 (6.6b)

Eq. 6.6 gives the limit cycle quenching constraint clear-

ly in terms of the loop transmission to be synthesized,

i.e., it is merely a minimum gain margin. This is the

gain margin mentioned briefly under specifications in

Sect. 1.3, Eq. 1.21, and it is taken as a specification

for the EEAS design. It is not surprising that a gain

margin emerges as the condition for limit cycle quench-

ing, however, it may be somewhat surprising that p > 1

is satisfactory for some nonlinearities. For the ideal

relay P = M / = 4/(.8557) = 1.49. We have verified

satisfactory limit cycle quenching by analog simulation

with IL(jw7)I = 1.26(+2db).

In all subsequent discussion of the EEAS, Eq. 6.6

is taken as a specification and it is therefore assumed

that the nonliearity input signal is composed of a

forced signal component xf(t) and a single oscillating

component due to the excitation input A0 .
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6.3 EEAS Sensitivity to Plant Gain Changes and Behavior

of L (j ) with Changing Plant Dynamics
0-0

The most attractive property of the SOAS is its

inherent zero sensitivity to plant gain changes. In this

section it is shown that the EEAS retains this property.

If the oscillating component of X at the input to

N in Fig. 6.1 is denoted by Xo, then

Xo = -AoGIG2P - XoLo o (6.7)

M
L o = NoGG2 = GIG2KPh# and at jw , X (jWo) = Ae

thus (6.7) becomes

Aej = -KGl(j0o)G2 (jWo)P h(jo [Ao + Mo ej] (6.8)

or

A/K I Gl(jwo)G 2 (jwo)Ph(jo) IAo + Moej I (6.9)

To obtain an expression for , observe that (6.8) is

j  -L (jWo )  J
Ae = N [Ao + Moe (6.10)

o

from which we write

- Tan- sin+ c (jW ) + 7 (6.11)
!/M + COS0

provided Mo is real. If M is complex, is replaced

by + o and M by IMo in the Tan- I term of

(6.11). In either case # is independent of K, and it

follows that A/K = A1/K1 in (6.9) is also independent

of K. Substituting this in L = N GIG2P = iG G Pf f 1 2 A 1G 2Ph
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shows the desired zero sensitivity to pure gain changes.

Similar analysis will show that the zero gain sensi-

tivity property is retained with the excitation A in

Fig. 6.1 applied to any point between the nonlinearity

output and the varying gain factor. The input point shown

has been chosen because it yields system equations in

convenient form. If, for example, Ao is applied at the

input to N, the equation corresponding to (6.9) is A/K =

IAo/K - eMoG1 (jwo)G 2 (jwo)Ph(j o ) I, and A/K is not con-

stant due to the Ao/K term on the right.

Now consider the behavior of L (j ) as plant

dynamics change. From Eq. 6.11 the plot of vs. L(jW)

of Fig. 6.3 is constructed. Taking the excitation freq-

uency o constant, /y(jW0 ) will vary with plant par-

ameters and cause to change along its respective Ao/Mo

contour. However, if Ao/M < 1 there are either two

solutions, or no solutions for 4. Fig. 6.3 shows that a

unique is obtained for every Lo(jW ) if Ao/Mo > 1.

For this reason Ao/Mo > 1 is assumed for the remainder

of the EEAS synthesis.

Rearranging (6.10) slightly,

-N.Ae _o _V0_ .- e
L 0(jW ) = ____ - (6.12)

o O  [A + Moe ] [A /M + e9]

This is the relation that fixes the ILo (jWo) character-

istic at a particular level. The magnitude of (6.12) is

shown on Fig. 6.4, and it is easy to show that if
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Fig. 6.3 4 vs. o(jW0 ) with A /M as a
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(O a+ ) .
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Fig. 6.4 IL (jW O) vs. A /M with 4 as a

parameter.



Ao/M o > 1, IL ( ) i < 1 for all E [-120o, +12001

From Fig. 6.3 this translates to the same result for

So(j ) +1800 E [-600,+60-], or in an even larger range

for larger Ao/M . This means that if wo is taken close

to W the loop transmission will be less than unity even

though the limit cycle quenching gain margin p might per-

mit a larger value.

From (6.12) we also get ILo(jWo)/(l+Lo (jo))I =

I-e Mo/Ao0  = Mo/AO , which is constant. Thus, as plant

parameters vary Lo(j ) varies along a contour of fixed

ILo (jw)/(l+Lo(jw))l on the Nichols chart as shown by Fig.

6.5.

Locus of Lo (j o

Fig. 6.5 Variation of Lo (jwo) on Nichols

chart coordinates.

The above description applies to M°  real, as it is

for all odd, static, and single-valued nonlinearities. M

will be assumed real for the remainder of this chapter.

Although somewhat more tedious, the extension to complex



M is straightforward.

6.4 Synthesis of an Elementary: EEAS

In this section we shall develop the necessary

equations and synthesis steps for a simple EEAS where the

plant is assumed to have only gain uncertainty. The

approach of SPect. 2=1 is fnloweli , wi ,h e intent of

stripping away the complexity of the most general design

and exposing the basic design conflicts.

The structure in Fig. 6.1 is taken with N having the

usual DIDF,

N = M /A (6.13a)

f = M f/A , (6.13b)

under quasi-linearity constraints

maxxf (t) < Al / (6.14a)

b < o/8 " (6.14b)

In addition, we now have the limit cycle quenching gain

margin

ILo0 jw()I < p , (6.15)

where w satisfies Lo (jW) = -1800

Let the plant be P = KPh = K/[s(s+a)] with the gain

factor ignorance given by K E [K1 ,K2], and K1 , K2 and

a are known. To complete a set of specifications take
2 2

T = a/(s+ a) Re = r/s, and assume the maximum mag-

nitude of oscillating signal at the system output is
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bou.nded above by m.

The output oscillation magnitude ICo (j)I is

written from Fig. 6.1 as

Ao  IG2 : (I.j. ) P (,j'o) I
Co(1o) + L ( (6)6

Taking maximum plant gain K 2 , and imposing the magnitude

constraint gives

AoK2 Gh (j~ wo)
< m . (6.17)1 + Lo(jWo)l

From (6.12) Ao/j1+Lo(jo)1 = Mo/ILo (jo)j giving in

(6.17)

K2 M IG2 (jW)Ph(j o)j < mIL (j ) . (6.18)

The extreme forced input signal to N is

RT ART
Se leX (6.19)

e N G2P M K G2 h

and solving for G2,

ART
SleG2 (6.20)

2 M K Xe h

Evaluating G2  at wo and substituting in (6.18) yields

x (jW ) K2Mo R (j o)T(jwo)
A 1 > L (jo) (6.21)

This inequality is the counterpart to Eq. 2.9 for the

SOAS, and indeed reduces to (2.9) if we recall that in the

SOAS JLo (jWo) = 1. Thus, the same arguments used in
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choosing Xe to minimize wo would seem to apply to the

EEAS. What we have not seen yet for the EEAS is that

minimizing wo will optimize the design in the sense of

noise transmission discussed in Sect. 1.4.

The constraints on L (jw) are summarized as

follows. For limit cycle quenching

IL o (j~ ) i < P , (6.22)

where p is now the design value of quenching gain margin,

presumably smaller than the theoretical quenching limit.

Due to the limit on output .oscillation magnitude

K2AIM R (jwo)T(jo)
IL (j ) >  Xe(o )  (6.23)S 0 K 1mMf Xe(je 0

with A1 satisfying quasi-linearity constraint (6.14a).

The loop transmission magnitude is fixed by

ILo(j 0 ) = -e (6.24)
IAo/M + ej (6.24)

In contrast to the SOAS, the designer must fix ILo(jWo0 )

in the EEAS by selecting a suitable combination of

and Ao. This will make the loop transmission shaping

task more difficult and some cut and try may be necess-

ary.

Temporarily choose Xe  in the form previously used

for the Type 1 plant and step inputs, i.e.,

Xe s+cb (6.25)
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Then A1 = aqxu , and inserting all the given quantities

in the right side of (6.23) results in

.aq. 1 (a) s+(,b
L (jrK 2Mo > ) " 2a (6.26)

01 M Mf s (s+ oj ) ) W

The bounds for IL (jw)! are sketched on Fig. 6.6.

Lower bound for ILo (jw )

K2AIMO I Re(jw)T(jw)
SKlmM X e(jw)

= K/mMoG2(jw)P (jw) I

b Upper bound for IL (j) I

7 > -log logw

I L 0°

Fig. 6.6 Boundaries for EEAS oscillating
signal loop transmission.

The foremost goal in shaping Lo(jw) within the

constraints of Fig. 6.6 is to optimize in terms of noise

transmission as discussed in Sect. 1.4, i.e., to minimize

the high frequency asymptote of the loop transmission.

We assume that any sensitivity requirements due to param-

eter uncertainty other than plant gain will permit L0

to be below the lower bound in Fig. 6.6. Otherwise, the

lower bound is not a constraint (in the present problem

there are no such sensitivity requirements, but they will

exist in the general design problem). IL (jw)I cannot



165

assume its final asymptote until it has encountered the

lower bound and w has been established along this

bound. This reasoning indicates that _w should be min-

imized, i.e., the final asymptote should be assumed at

the lowest possible frequency. One may postulate w

lower than w_, say at Bw,, in Fig. 6.6, in which case

1Lo (jo)J > p. It is difficult if not impossible to

satisfy (6.24) at this frequency with any reasonable L

when p > 1/2. However, ignoring this, note that the

lower bound has an excess of two poles (more in practical

designs), so if ILo (jo) > p, 1Lo(jw)I must then

decrease slower than the lower bound to avoid having 1800

of phase lag before reaching the upper bound at p.

The conclusion is that the optimum Lo(jw) has close-

ly the characteristic shown on Fig. 6.6. The shaping is

now explained in detail. As w approaches the boundary

intersection of Fig. 6.6, ILo(j) lies between the

bounds, joining the lower bound at the intersection, and

following it until the far poles may be inserted. The

poles must be inserted far enough out so ILo0 (j ) < p

and to permit 1Lo (jWo ) l to be established on the bound-

ary. For example, suppose p > 1 and w is at the

boundary intersection. Further suppose that we attempt

to choose wo = T . From Fig. 6.3 = 00, and on Fig.

6.4 IL0 (jWO) < 1/2. Hence the necessary ILo ( j Wo) I

cannot be achieved; instead wo must be positioned far

enough above wn such that c differs from zero by the
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amount required to obtain some ILo0 (jo)I > 1/2. Let L°

shown be a trial value and assume that it establishes w7

at the point labeled. How do we find ? First,

recalling from Sect. 6.3 that /A /0 > 1, choose A =o o

1.2Mo for example. Using this Ar and /L (j) in

Eq. 6.11 to get (w) for Eq. 6,24, IL*(jw) is plott-
O

ed as on Fig. 6.7 over the frequency range where the

trial IL (jw)j is coincident with the lower bound in

Fig. 6.6. IL*(ji)I represents the achievable IL (jWo)I

with this specific trial. The oscillating frequency is

jL*(jw)

. IL (jW)I
i O

Fig. 6.7 Location of oscillation frequency.

then chosen at the intersection. If the two curves do

not intersect Ao may be adjusted, or the far poles of

the trial loop transmission adjusted. If p < 1/2 (see

fig. 6.4) it will be beneficial to take = T becauseo r

a smaller A results. In this case the design is con-

siderably simplified in an obvious way, but for p > 1/2

this is not possible unless the optimality of the design

is compromised by allowing ILo(j ) I to be smaller than

required.
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It is now clear that Xe should be chosen to minim-

ize the lower bound given by (6.23), and this is accomp-

lished by maximizing IXe (J ) I/A, at wo. This is the

same criterion obtained for Xe in the SOAS design, and

it is treated in some detail in Appendix A.

The remainder of the design for plant gain uncert-

ainty and no disturbances proceeds in essentially the

same fashion as the SOAS design in Sect. 2.1. The selec-

tion of Xe determines G2  completely from Eq. 6.20,

then G1  is shaped to obtain the desired Lo .  Lastly,

the prefilter is obtained using the specified transfer

function from F = T(l+Lf)/Lf.

To compare the EEAS design of this section with the

SOAS design in Sect. 2.1, note that the preceding argu-

ments have shown that IL (j, ) < IL_ (jW)I < p. Using

this in (6.26), and approximating wa wb < W , gives

S oK2 arW >- aW far mK i. (6.27)

Here it is seen K2qr/K mp assumes the role in the EEAS

which K2qr/Klm has for the SOAS in Eq. 2.14. If p < 1

the EEAS loop transmission must have larger bandwidth.

For p > 1 it is conceivable that an-EEAS design could

have smaller bandwidth, however, p must be considerably

greater than unity to realize any significant advantage

from the EEAS design. The ideal relay and saturation non-

linearities have p < 1.49, which is not large enough to



give more than trivial advantage to the EEAS for the

design problem considered in this section.

6.5 EEAS Design to Satisfy Quasi-Linearity and Output

Oscillation' Magnitude Constraints, with Practical

Specifications

Having looked at a rather idealized EEAS example in

the preceding section, a more general design scheme is

now developed. The plant will be characterized by

P(s,w) = K(w)Ph(s,w); K(w) [K,K 2  (6.28)

(w) W [KIK2]

where w is the plant parameter vector and only the

bounding sets W and [K1 ,K 2] are known. The oscilla-

ting signal at frequency w~ is supplied by an external

generator which has frequency tolerance parameterized by

y, with

w E [W'/y, WoY] = 0. (6.29)

A notch filter H is inserted at oscillating frequency

Wo, as in the SOAS, giving the structure shown by Fig.

6.8. This filter has width Q and it is presumed that

A D

F G1/H X G2H PR C

-1

Fig. 6.8 EEAS structure with notch filter added.
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y in (6.29) is adjusted to account for inaccuracies and

small parameter variations in H. The nonlinear element

N is characterized by DIDF (6.13) under quasi-linearity

constraints

lx (t) Ae/ = qxb (6.30a)

Wb < Wo/8 (6.30b)

The sub-e again denotes the extreme nonlinearity input

signal (fastest and/or largest) and the function and par-

ameter values that exist in the system simultaneously

with x (t).

With uncertainty in plant parameters of Ph the

limit cycle quenching constraint is

max
w w ILo(jw) )I -s ILomJi) P< p. (6.31)

In the previous section we saw that w tends to be less

than wo, and Fig. 6.5 shows that when this is true the

left side of (6.31) contains the plant parameter set pro-

ducing maximum phase lag in the neighborhood of w0o

This parameter set will be used to define Lom

Constraining the output oscillation to have magni-

tude bounded above by m,

weW oK  l + L (j O 0max+L (J o

max K jG2 (j o)H(j wo)Ph(jw*o)
mx Mo Lo(j < m. (6.32)

weW IL jw
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Variation in the factor IPh(j o)/Lo(jWo) with plant

parameters is dependent upon the shaping of /__(jW)

near wo. For this reason the maximizing parameter set

for (6.32) cannot be determined until the design is comp-

lete. Further, we want to use (6.31) and (6.32) as

bounds for ILo(jw) , requiring that both inequalities

refer to the same L , i.e., both be determined by the

same plant parameter set. Let Lom contain the plant

K P defined as follows. hm(jwo) W Phin
mhm& 0 E o
and P = Phm if and only if w WmC W. Let K =

h hmm m
max K . Then take
wsW
Wm

K P hm(j o)ax I L (jWo )
m* = m hm o max o oi < m. (6.33)

om o Phj wo

Then

G2(j )H(jwo ) Phm (jo )
M K < m* (6.34)
om L (j ) -

defines the lower bound for Lom(j o ), while (6.31)

defines the upper bound for Lom(jW ) The ignorance in

(6.32) has been lumped in the factor m*. The designer

must estimate this from study of his particular plant,

and then verify the estimate or make adjustments when the

first design is complete.

Continuing the synthesis steps, there is a pairing

Phe and Te as discussed in Appendix B that gives the

extreme forced input to .N,
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SXe .. AeR T.X -

e H M KG 2HPhe

x D P e(6.35)
Mfe 2 HPhe

In the preceding section it was shown that the optimal

functional form for Xe is the same as for the SOAS.

thus, in accord with Appendix A, assuming step commands

and a Type 1 plant, the form

xmbX - +b (6.36)el s+w b x

is chosen. 0x will be used to include the necessary far

poles in X .

Solving (6.35) for G2  and substituting in (6.34)

yields, after some rearrangement,

Xel(jo) Xe(jw

eH (Jo e

Km M Re(jwo)Te(jwo)I Ph(jw )I
-- K em* Mf Lom(j) P he(j) (637)

This is the generalization of Eq. 6.21, and the EEAS

counterpart to SOAS Eq. 2.56.

Eqs. 6.31 and 6.37 respectively provide the upper

bound for Lom (j ) and the lower bound for Lom(j o).

If no notch filter is used (H = 1) the resultant w is

shown on Fig. 6.9a. L om(j ) must be situated on the

lowest (solid) boundary of Fig. 6.9a above wT and this
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, - Km*/m* MoG2 (jW)H(jo)Phm (j W) I

' W . (maximum)

Km/m* MoG2 (j )Phm(jW) -i

" ' logw

0 0
7r

7 
\

q ( log

(b)

Fig. 6.9 Behavior of X and bounds for L ase om
oscillating frequency wo is decreased.

is accomplished by shaping /Lom(jw) and selection of

A as detailed in Sect. 6.4. Lom must be above the

bound for all so 0  . Study of Fig."6.3 and 6.4 shows

that as wo moves away from w , ILom(j )I increases,

thus one need only work with the worst case value of
o
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which is w/yo

If the notch filter is employed we require its mag-

nitude characteristic. The basic equation for obtaining

IH(jw)j is (6.37), however, the value of ILom(jwo) is

unknown. We can assume that IL om(jw) is flat over

[W ,yw'] and take ILom(jTw)l = p, yielding from (6.37)

m*PKeMf Xel () he (J)

H(jw)j = ~acqxbKmMo Re(jW)Te(j A) FPhmJ ;

(6.38)

where Ae = Xaqx b . This should produce reasonable re-

sults when p < 1/2 and wo and w can be taken quite

close together, i.e., 4 = 0 on Fig. 6.4. If p > 1/2

so that $ must differ significantly from zero, requir-

ing that /Lom (jw) differ significantly from -1800,

the approximation ILom(jo)I = p will deteriate. The

alternative is to use smaller p or m* in (6.38), but

how much smaller must be determined by cut and try.

Given a satisfactory p for (6.38), the problem of

determining X, w', and H is identical to that in the

SOAS detailed in Sect. 2.3, and therefore is not repeated

here.

Once w' has been selected by the method of Sect.

2.3 and all remaining constraints, sensitivity to Ph'
disturbances, etc. permit the use of this value, the de-

sign proceeds by the same steps detailed for the SOAS in
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Sect. 2.3, except for the requirement to shape om(jo0 )

and select Ao. A is known from a X vs. wo plot as
0 0

shown by Fig. 2.7, IH(jw) is given by (6.38) from

which a rational function is synthesized, and G2  is ob-

tained from Eq. 6.33. Then G1 is used to shape Lom( w)

in accord with sensitivity and disturbance attenuation

requirements (treated in the following sections), and to

shape Lo,(jj ) at wo as explained in Sect. 6.4.

Lastly, the prefilter is obtained from F = T (l+L fe)/Lfe

where L = -±KG G Pfe A e 1 2 he'e
The discussion in Sect. 2.3 regarding efficient

assignment of far poles to the 1 part of X and to

Te also applies to the present design.

To make a brief comparison of SOAS and EEAS, first

note the position of p in H of Eq. 6.38. Comparing

this H with that given in Eq. 2.57, the EEAS requires a

deeper notch when p < 1. When p > 1 there is a poss-

ibility of obtaining a smaller bandwidth loop transmiss-

ion with the EEAS. The aspect of the EEAS most likely to

make it superior to the SOAS in some applications is that

Wo does not change with plant parameters. In the SOAS a

significant portion of the oscillating frequency interval

0 is contributed by the variation of plant dynamics in

Ph' and this effect is accentuated as the design is opti-

mised by reduction of wo. In the EEAS w will exper-

ience this variation, but wo will not, because this

frequency is presumably fixed to much smaller tolerance
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by the excitation source. Only w0 must remain in the

notch filter in the EEAS, hence the notch can be narrower,

having less effect on Xe(t), and ultimately can be

moved to a lower frequency than the SOAS permits. There

is no difficulty if w is not within the notch filter

as long as IL (jw.) t . < p, and this has been insured by

using the worst case in (6.31). Of course, the require-

ment of an excitation source is a disadvantage in the

EEAS.

6.6 Synthesis of EEAS Loop Transmission to Satisfy

Transfer Function Sensitivity Specifications

The transfer function sensitivity specifications for

the EEAS are assumed in the form detailed at the beginn-

ing of Sect. 3.3, i.e., we are given bounds on the max-

imun transfer function variation AlnJT(jw)l (and poss-

ibly A/T(jw)) as a function of frequency. The system

structure remains as in Fig. 6.1, and the plant ignorance

is as described in Sect. 1.3, Eq. 1.17. The approach for

synthesizing the forced signal loop transmission Lf(jw)

will be basically the same as developed earlier for the

SOAS.

First, it is necessary to write the forced signal

loop transmission as the product of a compensation trans-

mission G, and the equivalent plant Pf which contains

all the loop transmission ignorance, i.e., Lf = GPfo

We have previously shown in Sect. 6.3, Eq. 6.12, that
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L (jwo )  XG (j )G (jW )P (jao0o A 1 jo 2 .o h

[A /M + ej] (6.39)

where the oscillating input to N is AeJ. Thus

K/A = 1 (6.40)
SGl(j o) G2 (jo) Ph(jo) I IAo + oe 6.40)

and substituting this in the forced signal loop transmis-

sion,

Mf
Lf= N GIG2P - KGG2Ph

MfGIG
2Ph

IGl(jWo)G 2 (jWo)Ph(jWo) IIAo + Moe'l

G- 
1

UG(jwo) IIPh(j ) IA + MoeJ3]

= GKfPh = GPf . (6.41)

In the last equation the definitions

G E G1 G2  (6.42a)

Pf = K Ph  (6.42b)

K E (6.42c)

IG(j %) IP (jW) IIA0 + Me

have been applied. Recall from Sect. 6.3, Eq. 6.11, that

' - Tan- 1 +inco = Lo(jo) + = Lf( Wo +

(6.43)
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As with the SOAS, it is seen that the ignorance of the

dynamics of Ph introduces a high frequency gain factor

Kf in the equivalent plant Pf , and Kf contains some

parameter uncertainty. In the EEAS wo is set by the

excitation source, and therefore does not change with the

parameters of P. Thus we shall assume w constant in

this section, and it follows that there is no uncertainty

associated with IG(jw o). The quantities IPh( j o) l

and IA + MoeJeI both vary with plant parameters and

contain the ignorance of Kf , albeit small for many

practical designs.

Now, using the method in Appendix C, we wish to

calculate sensitivity bounds on the Nichols chart for

Lf(ji); i = 1, 2, ..., n. Such bounds apply to a par-

ticular plant parameter set. Specifically, we shall

find bounds for Lfm(jWi) = G(jwi)Pfm(jwi), where the

parameter set Pfm is the set maximizing the plant phase

lag at w and w , i.e., at high frequencies above the

varying plant dynamics. In the synthesis procedure of

this section we will take wo larger than the maximum

w . Then the above selection of Pfm gives Lfm(jW)

maximum magnitude over the plant parameters, as illus-

trated in Fig. 6.5. The limit cycle quenching constraint

is

MfILom(jw )I/M = ILfm(j_)I < pMf/Mo . (6.44)

Given a plant parameter vector w, we still require
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A , mo, and G in order to evaluate Pf at some given
so I

frequency. Since 0 and G are not available in the

first stage of the design, we shall neglect the uncer-

tainty in Kf and approximate Pf = Ph for use in

finding the first set of Nichols chart bounds. Such a

set of bounds is shown in Fig. 6.10 labeled

SLfm )-

2

-90eo n,0 m

1 -180 /L(jw) (deg)B-,-

2 I Mf/M
-M /M - 7 f o

Lfm(ja= -PMf/Mo

Locus of Lf(jWo)

Fig. 6.10 Illustration of forced signal loop
transmission shaping for the EEAS.



179

W1 , W2 "",. Wn . The remaining bounds, Bl, B2, and Bd,
on this figure are generated in exactly the manner

explained for the SOAS in Sect. 3.3.

In Sect. 3.3 (page 82) five properties of the

minimum bandwidth loop transmission were given. Pro-

perties 2. through 5. transfer directly to the EEAS by

replacing Lfl in the Chapter III statement with Lfm'

Property 1. is replaced by constraint (6.44). Using

these properties as a guide, the designer shapes

Lfm = GPhm = GPfm' and thus obtains the first value for

Lfm and the compensation function G.

Now a value of wo must be chosen, and it must be

chosen such that Lfm = MfLom/Mo is realizable as a

solution of Eq. 6.39. At this point we have a plot of

Lfm, say as shown in Fig. 6.10. The following method

for selecting wo is suggested. From consideration of

Fig. 6.4 and the specified p, choose a reasonable

Ao > Mo , say A = 1.2M . Then using the available

ILfm(j3) plot the curve of achievable JL* (jw) over

the frequency range above w . On the same figure plot

ILfm(j) I. Both plots are depicted in Fig. 6.11, and w0
is chosen at the intersection. The technique is the same

ILfm(jA)

ILfm(jA)l
.i 0 W

Fig. 6.11 Location of o
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as we have used previously in Sect. 6.4. With (o

selected, Lf(j ) will vary along a contour of constant

ILf(ji)/(Mf/M0 + Lf(jw))I as depicted on Fig. 6.10.

All necessary information is now available to cal-

culate Pf(jw) = KfPh(jw) without neglecting Kf. There-

fore Pf may be used to calculate a new set of Nichols

chart bounds for Lfm(ji) The algorithm given in

Sect. 3.3 (page 85) can be applied directly to the EEAS

by replacing sub-i with sub-m throughout. Using this

algorithm the designer iterates G to obtain an optimal

Lf satisfying the Ph parameter sensitivity specifica-

tions.

As with the SOAS, the design steps for satisfying

transfer function sensitivity specifications with mini-

mum bandwidth are rather tedious. Hence, the designer

should have some feel for whether the reduction in band-

width is precluded by other design constraints before

undertaking the procedure of this section.

6.7 EEAS Design for Disturbance Inputs

When the extreme forced input to N in Fig. 6.8

is due to a disturbance input to the system some change

to the synthesis steps in Sect. 6.5 are necessary to

insure quasi-linear operation. We shall denote the

extreme disturbance input by -De. With this input

present, there is a plant parameter set Phe which most

nearly causes the corresponding Xe to violate



quasi-linearity constraints (6.30). Paired with this

plant is loop transmission Lfe , and the plant output

signal is written from Fig. 6.8 as DeL fe/(l+Lfe ). This

quantity is evaluated at 0 and substituted in place

of Re(jw )Te(j o) (the plant output for a command

input) in Eq. 6.37 to give

Xel (jo) Xe (j o )

e o eAeH(jWo) - Ae

K Ml. D (j W)L (J ).  Phm(jo )

S f om o (l+Lfe (jo Phe (o)

(6.45)

All quantities in this equation are defined as in

Sect. 6.5. We are again faced with the problem that the

quantity ILfe/(Lom(l+Lfe)) is not known precisely un-

til the design is complete. Hence this factor, at jwo'

is approximated by (Mf/Mo) 1l/(l-PMf/M )I = Mf/IMo-PMfl ,

and (6.45) becomes

el wo) KmMb De(j o) Phm (Jo)
A H(j0) Km-M - M f hej )  (6.46)

m has been replaced by m* to absorb the ignorance of

the unknown factor discussed above.

For disturbance inputs the design procedure to

satisfy quasi-linearity and the output oscillation mag-

nitude constraint is precisely as detailed for command

inputs in Sect. 6.5, except that we use Eq. 6.46 in

place of Eq. 6.37. The ignorance in m* must be
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eliminated by iteration. For example, the first design

is performaed with m* = m, then if the oscillation is

too large m* is reduced appropriately and the design

carried out again.

As was the case for the SOAS, the EEAS design

cannot be made to satisfy the frequency quasi-linearity

constraint (Eq. 6.30b) for step inputs. The SOAS design

for step disturbances is discussed at length in Chapter IV

and the comments there apply to the EEAS as well.

The above relates to satisfying quasi-linearity and

the limit on output oscillation for disturbance inputs.

There may also be specifications on the disturbance

attenuation as a function of frequency. If so, these are

incorporated into the Nichols chart bounds on forced

signal loop transmission used in Sect. 6.6. The detailed

technique for doing this is covered in Sect. 4.2 and in

Appendix C.



CHAPTER VII

EEAS SIMULATION

In this chapter some results are presented from

digital simulation of an EEAS. Due to the strong simi-

larity of the EEAS and SOAS design schemes an EEAS design

is not detailed starting from initial specifications.

Instead, an excitation signal is applied to the SOAS de-

sign of Chapter V and some theoretical predictions of

Chapter VI are verified by simulation.

For reference the EEAS structure is shown again by

Fig. 7.1. The nonlinear element N is taken as a sat-

F G1/H X oG H P
R N2 C

-1

Fig. 7.1 EEAS feedback structure.

uration with the parameters given on Fig. 5.2. Study of

the saturation two-sinusoid input describing function

indicates the limit cycle will be suppressed for p <

1.49, i.e., the quenching constraint is

IL (jW~ ) L< p = 1.49 . (7.1)

The plant P in Fig. 7.1 is specified by
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K as - [alga2] = [1,10]
P(s) = KPh(s) = s (s+a) (7.2)a) K e [K,K 2 ] = [1,10]

with K and a independent. This is the plant used for

the SOAS example in Eq. 5.3. The compensations F, G1,

G2, and H are given respectively by Tables 5.6, 5.3,

5.1, and 5.4. These compensations determine the phase

characteristic of the loop transmission. This is shown

on Fig. 7.2 for two extremes of the plant pole over a

frequency band containing the oscillation frequencies of

interest.

.ig -7-- - o --.

-----4 -

.-4 ,-

Lii Li_

tI I

The excitation frequency is chosen at = 3 rps.

Using the SOAS design this choice is rather limited if

is to be kept within the notch filter H (shown in Fig.
2.11). From Fig. 7.2 we see that when the plant pole is

at -a = -10, w = Wo = 30 rps. With the oscillating

component at the input of N written Xo(J~o ) = Aej
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S=  implies that = 0(see Fig. 6.3). A = 1.2M

= 3.05 is chosen, and from

Lo( o)  (7.3)
0 0 [A /M +e

-this results in IL (j O) = 1IL ( j 3 0 )  = .454 . For
M

either EEAS or SOAS L AKP For SOAS operation

ILo(j30)1 = 1, while for the EEAS this decreases to .454

due to an increase in A and a corresponding increase in

the system output oscillating component. The input to N

and the system output for a simulation started at t = 0

as an SOAS, and with excitation A° applied at t = 4sec.

is shown in Fig. 7.3. After t = 4sec. the oscillating

signal magnitude should increase by 1/.454 = 2.2 as the

system assumes the EEAS mode. Fig. 7.3 verifies that this

does occur. The large transients in Fig. 7.3b are present

because initial conditions were not set to give an immed-

iate steady state condition. It is evident, by tracing

the effect of /o(jw ) variation due to the plant pole

change in Fig. 7.2 through Figs. 6.3 and 6.4, that the

variation of IL (jo)I will be small.

Before simulating the step response, consider briefly

the sensitivity of the present EEAS to parameter changes

of Ph. Recall for both systems we write the forced sig-

nal loop transmission as Lf = KfPh . Neglecting the small

variation in Kf, the EEAS loop transmission is just the

SOAS loop transmission of Chapter V reduced in magnitude

cci
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by 201og(.454) = -6.8db. This magnitude reduction

causes the EEAS loop transmission to violate its respec-

tive sensitivity boundaries on the Nichols chart. Using

Lf = GPf the the boundaries are computed in accord with

Sect. 6.6 and Appendix C and shown on Fig. 7.4. Para-

meters of the EEAS Lf are tabulated on Table 7.1. The

boundries apply to Lfm and it is seen that they are

SOAS E hK = 1 SOAS
a 10 .
A 1.2Mo o

= 3.05

( 1J ii II

time-sec/10O

Fig. 7.3a Input signal to nonlinear element
in SOAS and EEAS modes.
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SOAS EEAS

K= 1
a 10
A= 1.2M0 0

= 3.05

4.0, .12 .24 .34 .41 .40 .72 .84 .84 ).8

time-sec/10

Fig. 7.3b System output in SOAS and EEAS modes.
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IfI, __=. ::.zz._T__zi_

Z-U-h

Fig. 7.4 Bounds for Lfm(jW) and Lfm(jW) using

G of Table 5.2b and A = 1.2M = 3.05.

(o K (deg) KO  Kw a

30. 1. -30. 12.7 6.66×013 1

30. .99 -23. 4.2 6.60 3

30. .99 -16. 2.5 6.59 5
30. 1. -9. 1.8 6.63 7

30. 1.02 0. 1.3 6.78 10
Table 7 .1 Parameters of EEAS Lf.

--- 3G-,

Table 7 .1 Parameters of EEAS L f*
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violated by up to 6.5db. Since ILf(j)l is smaller for

all w in the EEAS it should be expected that the step

response will be slower (it could of course be speeded up

by changing the prefilter F). Further, since the sensi-

tivity bounds are not satisfied, the EEAS step response

can be expected to change more with Ph.

EEAS step responses for two plant pole extremes are

shown in Fig. 7.5. These may be compared with similar

SOAS responses (on a different time scale) in Fig. 5.11a

and 5.11b. Some time parameters from the two systems are

collected on Table 7.2, and these figures support the

qualitative predictions made above regarding the differ-

ences expected in the two system responses.

System a tr  ts
SOAS 10 1.1

SOAS 1 .45 1.6

EEAS 10 2.2 --

EEAS 1 .55 1.9

Table 7.2 Comparison of SOAS and EEAS
step response characteristics.
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EEAS

.9 -
-

a = 10
Ao = 1. 2Mo

= 3.05

2.2 sec

-- 4--- ---- -- --
*. * .13 .4 .3 .6 .6 .71 6 * ..* 1..7

time-sec/10

Fig. 7.5a EEAS response to unit step command
applied at t = 4 sec.
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EEAS

1.0-

K=1
a= 1
A = 1. 2MO O

= 3.05

- 1.9 sec

--.55 sec

H - I- - - - -

0.44 .12 .24 .4 .40 ,r4 .7 .04 .N 5.

time-sec/10

Fig. 7.5b EEAS response to unit step command
applied at t = 4 sec.



CHAPTER IIX

SUMMARY AND CONCLUSIONS

.8.1 Summary of the Oscillating System

Synthesis: Philosophy

It has been found that the design of either of the

oscillating systems considered herein is optimized with

respect to the effect of sensor noise on the plant by

designing for the minimum oscillating frequency w0 . Lower

bounds are imposed on wo by several design requirements.

In particular, these are:

a) the frequency quasi-linearity constraint which

requires that the forced signal describing function

component for the nonlinearity be valid over the

bandwidth of the fastest forced signal input to the

nonlinearity, as well as over the bandwidth of the

fastest system output.

b) the combination of magnitude quasi-linearity con-

straint and the upper bound on oscillating signal

component at the system output.

c) achievement of the required sensitivity reduction

for ignorance or variation of plant parameters,

excluding the gain factor.

d) achievement of a specified disturbance attenuation.

Techniques have been developed in detail for determining
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the lower bound on oscillating frequency for each of the

factors above. The designer must first ascertain which

requirement dominates in his particular design, i.e.,

which yields the greatest lower bound on oscillating

frequency. Whenever possible, this should be done with a

rough approximate design to avoid tedious optimization

with respect to all of the above requirements. Once the

dominant requirement is determined, the lower bound on

oscillating frequency is minimized using the techniques

and considering the tradeoffs detailed in the preceding

chapters. Portions of the design emerge as a result of

the oscillation frequency minimization procedure, and the

remainder is relatively straightforward and explained

herein.

8.2 Concluding Comments

The oscillating system stands out as one of the few

nonlinear adaptive schemes that have been put to practical

use. Heretofore, there has been no synthesis theory for

designing such systems to meet practical quantitative

specifications. In this paper a synthesis theory is de-

veloped which proceeds from quantative specifications in

a transparent fashion to a design that is optimal in the

sense of sensor noise power at the plant input. All sig-

nificant constraints on the design are considered, and the

synthesis theory is demonstrated with numerical examples.

There is a distinct class of design problems for
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which the oscillating adaptive scheme is superior to a

linear adaptive design. The specifications and optimiz-

ation criterion used in this work are sufficiently close

to those used for linear adaptive design [22 ] to permit a

valid comparison of the best possible design by both

methods. Thus, it is now possible to quantitatively

evaluate which of the two design methods yields the

superior solution to a given adaptive problem.
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APPENDIX A

Nonlinearity Forced Input Function

In this appendix the nonlinearity forced input

signal is considered in some detail. The goal is to

choose this signal, subject to the appropriate con-

straints, such that the oscillating system loop trans-

mission bandwidth is minimized. The structure of

Fig. A.1 is assumed and the forced input to N

denoted by Xf.

/ A

F G, G P
R N C

-1

Fig. A.1 Oscillating system structure.

Xf must satisfy the quasilinearity constraints

max xf(t) < Al/a (A. la)

b < Wo /8, (A. 1b)

which were introduced in Sect. 1.2. In Eq. A.1, wo is

the oscillating frequency, Wb is the bandwidth of

Xf (jW) A, is the minimum magnitude of oscillating
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signal component at N, and a, are the quasi-linearity

parameters of N discussed in Sect. 1.2. In Sect. 2.1,

Eq. 2.9, it was shown that Xf must satisfy

P(w 0 ) = IXf(j o) /[max f(t)l > Iu(j)l, (A.2)

where U is completely determined in terms of given

system parameters and specifications. In the frequency

range suitable for wo, IU(jw)j is decreasing with w

so that the optimum Xf, which will permit minimum W.,

is the function that maximizes U in (A.2). In Sect.

2.2 it is shown that the left side of.(A.2) can, in an

idealized sense, be made arbitrarily large by choosing

Xf = Xfl + Xf2 , where Xf2 is given a constrained

maximum effect on the time response and a complex pole

pair at wo, allowing any value for Ixf 2 (jo) I, and

hence for IXf (jw) . However, this Xf2 is impractical

because of the acute system sensitivity to small

parameter variations. The design of a practical Xf2
is described in Sect. 2.3. In this appendix we want to

determine the function Xfl , which is to be the rela-

tively 'smooth' low frequency dominant portion of Xf,

that will minimize the remaining burden on Xf 2 , or

allow the minimum wo if Xf2 = 0.

For notational convenience we will consider

Xf 2 = 0 and Xfl = Xf. In order to deal with specific
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functional forms for Xf some assumptions must be made

with regard to the system input and the plant. We

assume the plant has one pole at the origin (Type 1) and

R is a step input. Using the Final Value Theorem and

lim lim
Fig. A.1, c(m) = c(t) = sC(s) =

t-Co s+0

lim sN X (s)G2 (s)P(s). For c(-) finite in the pres-

sence of step inputs, Xf(0) must be finite and non-

zero, excluding poles and zeros at the origin in G2.

Summarizing, Xf (j) is to be a relatively smooth

function having bandwidth wb < w /8 and with Xf(0)

finite. The simplest such function is

Xf (s) = Sb (A.3)

which yields

p = (A.4)

Since Xf = RFG,/(l+Lf) with Lf = NfG1 G2P in

Fig. A.1, it must have the same excess of poles as RFG1

(> 3), thus Xf in (A.3) can not be realized in the

assumed structure. However, sufficient far poles

(>> w~) can be added to make Xf realizable with no

significance to the present discussion. On Table A.1

below several additional possibilities for Xf which

allow closed form calculation of p are tabulated.

These do not of course cover all the possible choices

for Xf, but by varying the several parameters in the



Trial Xf (s)

.11 1

s+l / 2 + 1

2 1 ; n >1 .(n-1l) !e(n-1)

(s+l)n (n-1) (n-)( 2+ 1 ) n/2

3 l<p< (p/(p-

(s+l) (s+p) /0o 2 L /0 2+p2

4 1 < 1 exp[// Tan-'{/1T7/}]

s 2 +2cs+l /(w 2 -1) 2+4 2  2

5 2 (s+pl) 0 max P2  P2 (p l2 )- P2 > 1/W1772 -+ /W-702+-p22

P1 (s+l) (s+p 2) - 0
2 22 Pl-1

< P2 < wo /o P1 ; otherwise

bp < T a r0 0fn2 2

Table A.1 Tabulation of some trial functions Xf(s).
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table a wide variety of functions are considered.

For the purpose of comparing the functions in

Table A.1 define wb as the solution of

IXf(jwb)/Xf (0) = l//Y . For S = 3, Trial #1 gives

.i = .316 with o= Bb = 3. For Trial #2 with n = 2,

= .575 with = Bwb = 3(.644) = 1.93. Thus Trial

#2 seems to be better than Trial #1 by the ratio 112 /1 =

1.82 (= 5.2db). This is true under the stated condi-

tions, but it is found that p > p2 for 0 > e 2-I

2.53. Thus for practical oscillating frequencies Trial

#1 is superior to Trial #2 with n = 2, i.e., other

design considerations nearly always force w0 > wb.b

For n = 3, p1 > P2 for w, > /(e 2 -2)/2 = 1.64. It is

clear that in practical design Trial #1 will provide

larger p than Trial #2.

Investigation of the remaining functions of Table

Al is quite detailed. We shall simply summarize by

stating that no acceptable combination of parameters in

Trials #3, 4, and 5 produce a p that is larger than

than of Trial #1 with reasonable w .

From the above it is concluded that Xf(s) from

Eq. A.3 (Trial #1) gives the largest y that is readily

available and this function is used as a standard for

Type 1 plants and step commands in the body of the paper.

It may also serve as a standard against which any new

function not considered herein may be compared.
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For plants with other than a single integrator

and/or other than step inputs, an investigation similar

to that above should provide the designer with sufficient

insight to choose a reasonable Xf



APPENDIX B

Determination of the Extreme Plant

and Transfer Function

Using the oscillating system feedback structure on

Appendix A Fig. A.l, the forced component of signal input

to N is

Zf AZf
X (B.1)f NfG2 P MfKG 2 h

where Zf is the forced component of plant output, A

is oscillation magnitude at the input of N, and N =

Mf/A is taken as the forced signal describing function

for N. The plant is characterised as

P(s,w) = K(w)Ph(s,w); w E W, (B.2)

where w is a parameter vector and only its bounding set

W and possibly constraints among its elements are known.

Ph() is taken such that Ph(s) + 1/s n  as Isl + ~. In

order that the assumed describing function hold, the

quasi-linearity constraints,

maXlx (t) I < A/a (B.3a)

b < apo/8 (B.3b)

are imposed. wb is the approximate bandwidth of Xf(jw),
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Wo the oscillating frequency, and a, are the quasi-

linearity parameters discussed in Chapter I. (B.3) must

hold for all system inputs and all w e W. Therefore, we

require that these inequalities hold for the worst case

Xf, which is written

X= e (B.4)e MfKeG2 Phe

The sub-e denotes that Xf and the accompanying function

and parameter values which most nearly violates (B.3),

i.e., the fastest and/or largest Xf. In the oscillating

system synthesis theory it is assumed that the permiss-

ible Zf are given by specifications. From this range

of Zf, and the possible Ph' the designer must select

Ze  and the accompanying Phe that do indeed produce the

extreme X eo This selection must be made before the de-

sign is carried out, so G2 and the precise pairings of

Ph and Zf are not known.

It is admitted at the outset that we do not know how

to make the above selections in the case of an arbitrary

plant and specifications on Zf. What is done below is

to make some observations that give the designer a rea=--.

sonable chance to make a good selection. If this select-

ion is incorrect, it will be revealed by the first comp-

leted design, and the designer should by then have the

insight required to make the correct selection.

For a command input Z = R T , and for distuibancese ee
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M
it is Ze = -DeL fe/(l+Lfe), with Lfe - e GG2Phe

Presumably the expected range of inputs can be surveyed

to determine Re or De . Calculating the ratio X f/Xe

while the command input is held at its extreme value,

A .ReFL

X f KfKG.2Ph. r + f
e  e e FLfe

MfKeG2 Phe 1 + Lfe

and canceling all the common factors

1 Le
X + Lf X e (B.5)

The same manipulation for a disturbance input yields

exactly the same result. Therefore, Phe is the same

parameter set regardless of whether Xe is the result of

a command or a disturbance. For command input Re we

can also write

AK TPe he7
X f e [[h] X e (B.6)
f A K  P ee [ Ph

The variation in AKe/AeK with plant parameters is of

the same order as the variation in IPh(jwo)/Phe(jWo )I

which tends to be small because o is well above the

varying plant dynamics and this plant ratio approaches

unity for large wo. Now suppose temporarily that the

transfer function sensitivity is to be quite small so

that T/T = 1 for all plants. Then
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X Xe o (B.7)

Consider a plant Ph whose poles and zeros vary indep-

endently, e.g., with IPh(jw)I lying in the envelope of

Fig, B.1la. We have postulated in Fig. B.la that the ex-

treme plant is Ph with zeros set to minimum and poles

NAIPh(jw)I

h logw

- Phe(jw)
(a)

Alx f(jo)

logw

(b)

Fig. B.1 Illustration of extreme plant selection.

set to maximum. The concurrent variation in Xf in

accord with (B.7) is shown in Fig. B.1lb. As Ph dev-

iates from Phe' IXf(j) I becomes smaller than jXe(jW)

for all w, but the bandwidth of Xf(jw) increases. It

is inferred from this observation that Ixe(t).I will

likely have the largest maximum value, but x e(t) will
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be the slowest xf(t). Thus the plant that gives the ex-

treme Xf(t) with respect to (B.3a) is different from

the plant giving the extreme with respect to (B.3b).

This observation is supported by the following example.

Let Ph = 1/[s(s+a)], a E [1,10], and Phe =

1/[s(s+ae)]. Let Xe = 150/[(s+6)(s+25)]. In Fig. B.2

the various xf (t) from Eq. B.7 are shown for three

choices of a e . In Fig. B.2a, with ae = 1, x e(t) is

simultaneously the fastest and smallest xf(t).

Conversely, with ae = 10 in Fig. B.2c, xe(t) is sim-

ultaneously the slowest and largest xf(t).

Recall in the synthesis steps where X is used

(Sect. 2.3 and 6.5), that the designer is most concerned

with constraint (B.3a). This constraint is used directly

in the equations of that synthesis procedure to obtain a

lower bound for the oscillating frequency. Once the low-

er bound is obtained, (B.3b) merely dictates whether it

may be used in the design. Since it is not generally

possible to select Phe to give the extreme x f(t) for

both (B.3a) and (B.3b) simultaneously, it is clearly

appropriate to choose the extreme with respect to (B.3a),

i.e., the magnitude quasi-linearity constraint. The pos-

tulated Phe in Fig. B.la is the correct selection when

poles and zeros vary independently. For the more general

plant, a good choice of Phe seems to be the parameter

set that minimizes IPh(jw) over the maximum portion of

the system bandwidth, obtained by inspection of IPh(jw)l
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Fig. B.2 Variation of xf (t) for several

selections of Phe*
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over the permissible plant parameter sets.

Moving now to the case where the transfer function

variation is not vanishingly small, it is quite reason-

able that the above selection of Phe remains valid.

Then it is necessary to determine which of the admissible

transfer functions T is the Te that is paired with

Phe. With Phe selected as above (zeros minimized and

poles maximized) it tends to have smallest magnitude and

least phase lag over the system bandwidth. A glance at

the Nichols chart, which displays the relationship be-

tween T/F = Lf/(l+Lf) and Lf = Nf GG2KPh' immediately

leads to the conclusion that Te is the T for which

IT(jw)I is minimum over the system bandwidth.

In summary, the guidelines for choosing Phe and

Te are as follows. Phe is the plant with minimum

IPh(jw)I and maximum /Ph(jw), while Te is the lower

bound of specifications on IT(jw)l.



Appendix C

Derivation of Bounds for L(j') from Transfer

Function Sensitivity or Disturbance Response

Specifications

The technique for determining bounds on acceptable

loop transmission from specifications on transfer func-

tion sensitivity and/or disturbance response is detailed

below. The technique applies to any linear time-invariant

two degree-of-freedom feedback structure [1 8 and is

taken from [22]. The structure in Fig. C.1 is used,

however, all two degree-of-freedom structures are equiv-

alent with respect to the specifications considered

D(s)

R(s) F(s) G() P(s)C(s)

-1

Fig. C.1 A two degree-of-freedom feedback structure.

herein; thus any other structure could be used, or could

be transformed into the structure shown. For the purpose

of providing insight into the meaning of the bounds for

L(jw) and how they are constructed a'graphical method is

first presented, then a digital computer implementation

of the method is given.

In Fig. C.1 the plant P(s) is the constrained part

of the system given as a rational transfer function, but
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with bounded uncertainty of some parameters, i.e., P(s)

= P(s,w); w e W, where w is a parameter vector, and the

bounding set W is known along with any constraining

relations or correlation that may exist among the

elements of w. The loop transmission is

T,(sw) = G(s)P(sw). (C)

Since there is no uncertainty associated with G, the

plant variation may be written at some specific fre-

quency w. as
1

Aln[P(j i )] =sAln[G(jwi)P(jwi)] = Aln[L(jwi)]

= AlnIL(jwi) I + jAh(jiw) . (C.2)

The transfer function is

C FL (C.3)
T 1+L

There is no uncertainty associated with F so that varia-

tions in T(jwi) are written as

F(j i)L(jwi)
Aln[T(jwi)] = Aln (C.4)

1 + L(jw.)

=Aln 1 1+ 1x 11 + L(jwji))

Thus both the given plant uncertainty and the specified

permissible transfer function uncertainty are expressed

in terms of L. Suppose that the maximum permissible

transfer function uncertainty is specified by

AIn IT(j w) I n[S( )]; B(w) 1. (C.5)

We shall show how this specification is translated to a

boundary of acceptable L(jwi) at the frequency wi.
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First a number of discrete parameter vectors wr;

r = 1, 2, ... m are selected and the plant is evaluated

at wi for each, giving the complex numbers Pr(jwi,wr );

r = 1, 2, ... m. These points are plotted as shown by

Fig. C.2 on Nichols chart coordinates (InlP(jw) vs.

-1800 /P(jw) 00

InIP 1 (jwi)I

3 +

-. , ' Template of In[P(jw)]

Fig. C.2 Construction of the plant template.

/P(jw)). The points are then enclosed to define a region

of plant variation as shown, which we shall refer to as

the plant template. The designer must select m large

enough and the wr with sufficient care to insure that the

entire region of plant variation is included in the temp-

late with negligible error. Since L(jw i ) will vary with

the plant parameters, we will deal with a particular w,

which gives LI(ji) = G(jwi)P (jwi). To find a point on

the boundary for LI(j i) the template may be cut out of

Fig. C.2 and laid on the Nichols chart for L(jw) shown in

Fig. C.3, (which has been drawn using the same scales as

the plant template) keeping the coordinate axes through

P,(ji) parallel to those of the L(jw) chart at all times.

The L(jw) chart has contours of constant
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InlL(jw)/(l+L(jw)) I. Choose any angle /G(jw. , or equiv-

alently L (ji) , and position the plant template on

Boundary of acceptable In[L (ji)]

In6B +

ln6

SInlL (j 1

/ L(j) -180 o  o

/I /

n IPnG(ji .)

In P -(ji)

Fig. C.3 Method for locating one point on the
boundary of acceptable L1 (ji).

this angle grid. Next the template is moved vertically

along the chosen angle grid until one finds a point where

Eq. C.5 is satisfied with equality, i.e., until the temp-

late just fits between two InIL(jw)/(l+L(jw))I contours,

say lnS and In68 i (8i = B(i)) as shown by Fig. C.3. In

this position the origin of template coordinates deter-

mines a point on the boundary for L1 (ji). Additional
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points are found by repeating the process at different

angles.

A plant template is prepared and the boundary for

LI (jw) found at a sufficient number of discrete frequen-

cies to provide a high degree of confidence that (C.5)

will be satisfied closely at any w by an L, satisfying

the bounds at the discrete frequencies. Of course the

same plant parameter set is used for P1 at each frequency.

The Nichols chart also has contours of constant

/L(jw)/(l+L(jw)) , so that given a specification of the

form

AZT < w (w) (C.6)

the boundaries for L (jw) to satisfy this specification

can be found in the same manner as above. For any /L

the greater of the InlL (j i)I determined by (C.5) and

(C.6) determines the bound that must be used to satisfy

both specifications.

Next we consider the bounds on L(jw) determined by

disturbance response specifications. From Fig. C.1 the

disturbance transmission is

CD T 1 L V . (C.7)
D D 1+L 1+1/L 1l+V

We assume the specification on TD is given as

In TD(j w) I < n[p(w)]. (C.8)

Here we have a specification on the absolute value of the

transmission rather than the change. However, (C.8) must

be satisfied for all values of the plant. To find the
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boundary for Li(jii) we first construct a template of

l/P(j i) since Aln[V(jwi)] = Aln[l/P(jwi)]. Positioning

this template on a In[V(jw)] vs. /V(jw) chart, a boundary

for V,(j i) is found as demonstrated in Fig. C.4a. This

3 3 Boundary ofBoundary of - "IcceptBoundary of acceptable In[Ll (jwi)]
acceptable 1

ln[Vl(jwi)] z r

j- np i

/V(ja ) /L(jw)

Template of
ln[l/P(jw)]

(a) (b)

Fig. C.4 Location of boundary points for L(ji)
to satisfy disturbance transmission

specification.

boundary is then translated to its equivalent for LI (j.i)

= 1/V1 (ji) as depicted by Fig. C.4b.

Next a digital computer implementation for finding

the boundary for L (j.i) due to transfer function spec-

ification (C.5) is investigated. Let

G(jw) = ge j  
(C.9)

Pr(j i ) = preJ r; r = 1,2,...m. (C.10)
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Using T,, T,, due to P,, P2 respectively in (C.5) with

equality and squaring both sides yields

T (jW ) 2 p]2(gp2 )2+2gp cos'(e+ +l1

S2(jWI) p gp 2+2gpjcos(O+ )+lJ

f(g) = B . (C.11)

It can easily be shown that f(+o) + 1, f(g) 4 0, and f(g)

is finite for all real g and 08+ r kf. Also, f'(g) = 0

has two real roots giving the qualitative sketch in

Fig. C.5. Given P,, P 2, and 0, it is a simple matter to

f(g)

g
g1 0 92

Fig. C.5 Graphical representation of Eq. C.11.

solve for the roots gl, g2 of (C.11). Consider the poss-

ible results in determining the boundary for L1 (j) =

gplej(0+ 1 )

g1 , g2 complex: For this case there is no real g

satisfying (C.11) and therefore at the given /L (j

= 8+, there is no boundary point on the Nichols

chart of Fig. C.3. This case can occur if the per-

mitted variation in transfer function is larger than

the plant uncertainty.

g,, g2 < 0: This gives two boundary points on Fig.
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C.3 on the angle grid ati(jW i) = 8+ 1+1800, Thus

at L i (j ) = 8+ there is again no boundary for

L1 (ji)

g, < 0, g2 > 0: The negative root gives a boundary

point displaced 1800 from the angle grid of interest

at 8+ ,. g, gives a valid boundary point for L.(iw.).

g1, g2 > 0: This case produces upper and lower

boundary points for L (j i) on the angle grid

S,1 (jw1) = 0+# . L1 (j. i ) must lie below the upper

boundary or above the lower boundary.

The above observations allow us to construct an

algorithm for obtaining a boundary for L1 (ji) as follows.

Algorithm for bounds on Li(j i) due to Eq. C.5

1. Select plant parameter sets wr; r = 1,2,...m e W

such that the plant template boundary is satisfac-

torily covered.

2. Choose e = /G(jwi) and solve Eq. C.11 m2-m times,

i.e., for all combinations of IT (jWi)/Ts (ji) I;

r / s, getting roots glaT g2a; a = 1,2,...m* < m2-m.

Let

1g= l<am<m*,a

= max
92 l<a5<m* g2a1'

9, < g for all a, so if g* < 0 there are no

bounds. Otherwise, the lower bound for L(ji) is at

plg*ej (). If g* > 0 there is also an upper bound

at p 1g*e
j (8 + 1). When there are two bounds the lower



219

bound is higher on the Nichols chart (g* > g*) and

L i (j) must avoid the region between the two

bounds.

3. Repeat 2. for as many 8 as desired to obtain the

complete boundary for L (jwi).

Treating specification (C.6) in the same fashion

T2 (jwi)

T2(jWi )  = Ti ' (C.12)

and after some manipulation

g2plp2[sin (2- 1) -tCOS( 2-#) ] +  (C.13)

g[p2(sin(8+2)-tCOS(8+ 2))-P(sin(8+1)+tcOs(O+ 1)]-t = 0,

where

t = tan(Yi+ 2 -1). (C.14)

The equation for g locating bounds for L1 (j.i) is again a

quadradic. The bounds can be calculated by using the mag-

nitude algorithm given above with Eq. C.13 substituted in

step 2.

Lastly, the disturbance response specification of

Eq. C.8 yields

(gp) 2 + 2gpcos(e+ ) + 1 - 1/pj = 0. (C.15)

The bounds for this specification are calculated using

the same algorithm with (C.15) in step 2., which only

needs to be solved m times because (C.15) contains only

one value of the plant.

Listed below is a FORTRAN subroutine which calculates

the composite boundaries for L,(jwi) due to the three

specifications (C.5, C.6, and C.8). A representative



220

output is shown using the plant P(s) = K/[s(s+a)] with

K E [1,1001, a E [1,10], and specifications as listed

on the printed output. Also listed are PLANT subroutines

suitable for evaluating the forced signal equivalent

plant Pf used in the SOAS and EEAS iterative designs for

parameter sensitivity and disturbance attenuation.
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SUBRCU.TINF NICRNI1CWPETAAI ,DA,A2,PS) C~~1
C J. W. SP'AY. RFVISEO NOV. 72. KIC80005
C REF. HOROWITZ ANfl SID1. INTERNATIONAL JOURNAL OF CONrROL, NICRvo1Q
C VOL. 16, NO,. 2, t972, PP. 287-309. hICRvoi5
C RCtiTINE LrCATFS; 9OUNDS FOR G AND LI=G*Pt AT FREOUENCY W(RPS) TChiCrp'o?e
C SATISFY TH4E MOST RESTRICTIVE OF N IcRqI0o-
C 1. MAX(A8S(TJW)))/4IN(ARS(T(JWf):)RFIA(1) h IcR(o6l
C 2. MAX(ARG(T(JW)))hMIN(ARGCTCjW)))=REl1M2)(DFG) hjrRvO3

C 3. PA(B(r(lW)=EA3 NICPV@t0'
C IF SETACI) IS NrrATIVE THE SPECIFICATION IS IGNORED. NICRA'04!
C USER MUST SUPPLY qIjRROUTINE PLANT WHIrN EVALUATES KICRV059
C P(1,1)=PLANT MAGNITUDE AND P(2.I)=PLANT ANGLE IN RAnIANq hIcwi'es
C FOR N PARAMFTFR SETS. h icavo~
C PS IS ShITCH W4ICH A4LLOWS USER ROUJTINE TO RFAD PLA~NT PARAPFTER hIcRAA
C DATA ON FIRST CALL OF PLANT. N ICR9'079
C BOUNDS ARE rOMPtITEn FOR ANGLE OF Li ON CAI,A?) AT INCREMENTS NICR-07!
C DA IN CEGRE.. Klfrp'0Ilg

DIMENSION P(2,50),QFTAC3) Klcqoopt
1 FORMAT(ihjl0X,NI140L5 CHART BOUNDS AT FREO'jENCY2*.Fl0.4,fj1H .1xhIrqvoqQ9
2.*SETA(1)=#.F8.4.* PFTA(2)=@,EA.4,* AETA(3)=*.F8.4 .jIH0, N icavool!
31OX.ORCUND G-ANC*I-F..4X,*G-MAG*,3X,.G-MA,(OB).2Y'. hic~t'1S
4.Ll-ANGLF.,3W,.Li-pqAGe,2X..Lj-MAG(DR)e//) N icaple!

2 FORMAT(11H 15XEFio.4.2zx~rl@.4,* NO SOLITIONO) hiCBvilQ
3 FORMAT(lH l10X,*LO'FR*,7Fl0.4) N ICRI?115
4 FORMAT(1H l@RX,*lJP0ER*,7Fj0.4) N ICRA'1?Q
5 FORMAT(lb 10 XOSTARILITY LIMIT ENCOUNTEREno) NC~2

IF(PS.EQO.) CALL PIANT(P,W,N.PS) KICRIV13e
IF(PS.EQ.@.) RETIIRN N ICPI13!
wRITE(6,1) W,BETA N ICRtO149
BETA2=PETA(t)*@2 N ICrq~
BETA1I=.-BETA2 N IcR'1SQ
BETA3=1.-l./4ETA(3)**2 K IfRvj1t
8ETA4=3 .j4j5927.RETA( 2)/18e * NICS01eE
CALL PLANT(P,W,N.Pq) KCI6
A1:A1-!8e.*P(2,1)/1.j15927 N ICR~l7e

10 A1:Al.3.1415927/I8'. N ICR' 17!
GLM=-1. * NIrqB'10
GUIM~j.E2jg kNav
IF(B rA( ).Ir.R.) qO TO 20 NICAVX99

C CALCULATF BOLINnc FOR TRANSFER FUNCTION MAGNITVDE ;PFCtrICATIOK.KICA-10S
DO 15 I11N N ICez,200
DO 15 J=I1,N N CR?225
I F1I.FC..) Gfl TO 19 N IMCy219

2.P(1.J)EFETA1) NICqV2?e

C3=Cl*2-c2 N ICRV'23t
IF(C3.LT.OI.) Go TO 15 hjtrqVP3
Gl=-Cl-S0RT(C3) KICBv2dQ
G2.-2.*CI-CI KICR0245
IF(Gl.LT.Gi.m) GUM~r. N ICR* 2%9
IF(G2.GT.GLM) CLM2 kICRQ2%E

15 CONTINUE N IR(-19
20 GLA2-1. N iCBI265

GUAvl.E20 KICRP27@
IF(BETAC2).LT.O.) GO TO 30 KICBb'27q

C CALCULATE ROUNDS FOR TRANSFER FUNCTION ANGLe sPErIFICATIOK. NICrA"209
DO 25 lm1,N N ICRVPP
DO 25 .Jul,N N ICRO129f
IF(I.EC..4) GO TO 2q N IM~I29*
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T8TAhfEA4~.9Pf2.I )-P(2.JD) hN !C81:130

C2m-TiC3 m !CR032e
C3=CI*02-r2 N ICR'32
IF(C3.L-E.0.) GO TO 25 N jCRo33Q
Glz-C!-SCRT(C3) NIRO3
G2=-2.*C1-Gt N iCrpp42
IF(GI.I.T.GLA) GUAs'rt N ICA0345
IF(G2.GT.GL6T 9LA=? TBV9

25 CONTINdLE I CRP35'
30 GLO-1. N JCRO36V

GU~ui .E2q N IrQP36
IF(eETA(3)LT.P.) 119 TO 401 NI CR137

C CALCULATF 9OUNflQ FOR DISTURBANCE REqPnNSE SPFCIFICATION. KICBv379
DO 35 I:1,N NICRI73se
CI:COS(A1.P12. I) )/Pl.I ) N ICRV'38!
C2:Cloa2.RETA3/P(1.1 )0*2 N IC8t39e
IF(C2.LT.o.) Go (0 35 KICf!03q
Gl=-CI -S0RTIC2) NKICRP4iQ
G2m-2.*Cl-G1 N IC81448
IF(GI.LT.GLn) GUfl=Gt N ICPV41Q
IF(G2.GT.Gl.n) GrflGc NICRcO41S

35 CONTINLE N IC8(0420
48 GL:AMA2((CLmGLA.GL9) NI CRV42

Gd: AMI1%1(GLM GA GIT)) N ICPV'43Q
A1=A1.18!e./3.1415997 N !(Ro43t
AGP=h1.180.*P(2. 1)/3.1415927 N ICRV44e
IS20 N ICRV44
IL=O NI CRV45Q
IF(GL.LE.O,) GO TO S.: N !CRV455
GLDB=22..ALOGi8(GL) NIC8V46Q
GLP:GL*P(i.1) NICRV 465
GLPDB:20-*ALOGl0(G.P) NI Cq9'47
WRITE(6.3) A1.GL.GL"R-&GP,GLP,GLPOB N ICr8475

C CHECK~ IF PRESFNT LOWER ROUND IS UNSTAPLE FOR ANY PLaNT. NICRv48Q
00 45 1=1.h NJ CRV'48!
AL=A1.c180..P(2, I )/3.415927 NJCR949e
GP=GL*P(1,1) NICA049!
IF(AL.LT.(-1R0.).ANn.GP.GT.1.) ILu1 NICBV50e

45 CONTINUE N ICRV515
GO TO 55 KICS0519

58 ISZIS.. N ICRPV515
55 IF(GL.LE.P.) GO 10 6' N ICRP5?R

GUDBu2S .0ALOGIP(GI) NICA0525
GUPcGtJ*Pf1,l) NIrRco53P
GUPDBx2a-eALOGIS(G-P) KICRV.53t
WRITE(6,4) A1.GU,GI)flRAGPGUP-GiPflB N ICRv54e
GO TO 65 N ICRO54

68 ISZIS.1 NI CR0 55
IF(IS-EO.2) wRITECA,2) A1,AGP NICRV,555

65 IFCIL.EO.1) WRITECA.5) N IrRP56e
IF(IL.EQ.i) RETURN N ir.R56!
IF(AGP.LT-A2) RETURN N IC9057e
AI=Al-CA N ICRV57!
GO TO 10 N icqv5pe
END N iCcpsp
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SURROUTINE PLANT(P.HWNPS)
C ROUTINF GFNERATrS VALUES OF PLANT WITH VARYING GAIN, POLES.

C AND ZERCS FOR CALCULATION OF NICHOLS rHARr ROUNPS.
DIMENSION P,50),eit),PF(1~).P1410),7(?)ZC(82,1.0)oPC(2.10)

1 FORMAT(13,7x.7E10.4/(8E10.4/))
2 FORMAT(lhl,10X.*PLANT PARAMETER VALUES UcED TO DETERMINE NICIOLS C

2HART BCUKDSe/1HO.1I ,*ERROR CONSTANTSO/( H ,10x,6E12.4))

3 FORMAT(I ,10XePOIF*,6F10.4/(1iW 17X,6F!0.4/))
IF(PS.EQ.1.) GO rO 39

C REAI AND WRITE PLANT PARAMETER VALUES.
C ADD ONE RFAPD Nn ONE WRITE CARD FOR EACH VARYING PARAMETER.

READ(5,1) hG,(G(I).I=I,NG)

WRITE(6,2)(G(I),I=i,NG)
READ(5.1) Pij,Pr(J).J:1,NPI)
MRITE(6.3) (P0(J),J=1.NPi)

C SET UP CONSTANT PARAMETERS OF PLANT.
P1(i)=Z.
NP=2
NZ=:
NPC=0
NZC:=0
RETURN

35 N=o
C ADD ONE no 60 FOR EACH VARYING PARAMETER.

DO 60 I=1.KG
DO 60 J=1,NP1
PI(2)=PO(J)

CALL BCDE(W,G(I)/P1(2),NP,PI,NPCsPC,NZZ,NZCZC.PR,PI.8,P(2,N))
60 P((iN)=SGRT(PR

e*?PI e *2)
RETURN
END
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C COMPLEX ZEO=EAOE~Z(.)Z(,) FPROR CONSTANT=C ForfF:'1015DIMENSION P~ ) .Z1l) PCc2,10) DZC(2.1Go) FOCF'0;@
PI=3.t415927 

RVV9
Dl.GQQ PFE m03ANU 

rM.3IF(NP.LE-0) GO TO 3 FODE> 041DO 2 !u1,NP 
RODF(045IF(CASP(I)).LT.l.F..10) GO TO 1 FOOFlVr 0DBmDO.P(I )*o2/(W**9*PUI)*o2) 
FODFlV055ANA-ATAN(W/P J)) 
F ODFP0GO TO 2 
F0!) E 65I DBDDB/W*02 
PDVFV070ADA-PI/2. 
EorEvo75

2 CONTINUE 
PrV83 IF(NZ.LE.p) GO ITo 6 P OCEltoR5DO 5 Ic1,NZ 
P0CE~t@9@IF(ABS(Z()).LT1.r.10) GO TO 4 ForF~'095DS=DB*CW*.2+ZC I **?)/Z( I )*2 eorcoio"AUA*ATANCW/Z( I)) 
POfEg5GO TO 5 
o-1S4 DB=DB.h..2 

I.P0!)EV115

A8A+PJ/2. 
20ECE1205 CONTINUiE 
20 CE" 256 IF(NPC.LE.e) GO TO 9 FOPE' 110DO 8 I=1,NPC 
FOCEV135

AUA-ATAN(2 .*PC(1.1 )ePC(2.I).W/(PC(2. I).. 2 -w..,)) PO!)Er,145I (W.LE.PC 2ol)~ Gn TO 8 sonflso15IF(PC(lI).LT.O.) 'qO TO 7 EOCFr'1sSAGA-PI 
20 C E- 160GO TO a 
P OrEv1657 A2A*PI 
POPEVl,08 CONTINUE 
20!)EQ1759 IF(NZC.LE-0) GO TO 12 sOC EP" 10

DO 11 I:1,N7C 
eoCE(1085

AUA*ATAN(2.*ec(1,I)eZCc2DI)oN/(ZC(
2 .)0.2.W. 2 )) EOPEP195IF(W.LE.ZC(2.1)) Gn TO 11 PO0EF920IF(ZC(1,I).LT.O.) Go TO 10 BODEV205AA*PI 

E ODFV'210GO TO 11 
POCEF'2t510 ANA-PI 
FOD~e22011 CONTINUE 
SODE022512 DBSQRT(ABS(op)) 
POME210GR=DB*COS(a) 
WOEV235GI=DBOSIN(A) 
PnV4D~z2 0.*ALOGi0(op) 
HGDE 1245RETURN 
FWCE~250END 
F 0EV 255
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SUBROUTINE PLANT(PF,W.N,PS)
C ROUTINE GENERATFS NORMALIZED PLANT VALUES PF FOR ~OAS NICIOLS
C CHART BOUND ITERATION.

REAL KF.KoKINF
DIMENSION PF(2,50).~(10),Po(10),Pi(10),Z(10),ZC(tP,1),PC(2,lQ)
DIMENSION MF(50)

1 FORMAT(13,7x,7E10.4/(8E1I.4/))
2 FORMAT(1H11,eOXPLANT PARAMETER VALUES USED TO nFTERMINE NICOLS C
2nART BOUNDSo/i

3 FORNAT(1H 10X,ePOLE*,6FI0.4/t(iN 17X,6F!@.4/))
4 FORMAT(412)
5 FORMAT(IINS,0X,eSSSg MO ITERATION FAILED TO CONVERGE SS$Se)
6 FORMAT(I9BoIX,OCOMPENSATION PARAMETERS*/)
7 FORMAT(BE10.4)
8 FORMAT(IHO0.10XOREAL POLES,/(IN v10XF10.4))
9 FORMAT(1NO.iOX,eREAL ZEROS*,/(1N iXF10.4,))

10 FORMAT1HOi0X,*COMPLEX POLES(ZETADOMEGA)o,/(1H ,1rX,2F10.4,))
11 FORMAT(1MI,10X,.COMPLEX ZEROS(ZETA.OMEGA)*./(1H .1.X,2F10.4,))
12 FORMAT(1hB,14x,*We,8x,MKFeSX,*Ke*,8x,*KINF*/)
13 FORMAT(1H ,10Xs3FI0.4aE12.4)

IF(PS.EO.l.) GO TO 90
GMmI.GNla,
GU.05

C READ ANC WRITE PLANT PARAMETER VALUES.
WRITE(6o2)
READ(5,1) NP,(iP0(J),JmlNP1)
WRITE(6,3) (P0(J).Ju$.NP1)
PI(1)00.
NPU2
NZ:0
NPC=O
NZCBe

C READ FIRST GUESS OF OSCILLATING FREOUFNCY w0 .
READ(5.7) k

C READ AND WRITE COMPENSATION DATA.
READ(5,4) NPL,NZLONPCLNZCL
WRITE(6,6)
IF(NPL.EO.NP) GO TO 20
IOMNP.1
READ(5,7) (P(I).IaI0sNPL)
DO 15 I2I0,NPL

15 GI=GIePi(I)
RITE(6.8) (PI(l),IzI0,NPL)

20 IP(NZL.EO.NZ) GO TO 30
18=NZ+
READ(5,7) (Z(1),II0I,NZL)
DO 25 IIB0,NZL

25 GI=GI/Z(1)
WRITE(6,9) (Z(I),I210,NZL)

30 IF(NPCL.EO.NPC) GO TO 40
10INPC+I
READ(5,7) (PC(itI).PC(2,1),I:IO,NPCL)
DO 35 I=IO,NPCL

35 GIOGI*PC(2,I).2
WRITE(6.10) (PC(1,I),PC(2.I),IzIBNPCL)

40 IF(NZCL.EONZC) GO TO 50
10UNZC+1
READ(5,7) (ZC(1,l),ZC(2,I),Ial0,NZCL)
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DO 45 Icl@,NZCL
45 GZUGI/(ZC(2,1)*02)

WRITE(6o11) (ZC(1,1),ZC(2p1) 51IIo 5 NZCL)

Do 70 Jnl,Np1
Pl(2)aP0(J)

CALL BOEWI/I7,PPPCPZ NCZRP,FR,PF(2.N))
IF(NS-EO.Q,) GO TO 7p

C ON FIRST CALL SOLVE FOR WO AND ADJUST GAIN SO) LP(JW@)=-1/2.
A0=1000.
DO 55 K01,25
CALL BODE(Wo,GM/PI(2).,NPL.Pl.NPCLPC,NZL,ZNZCL,ZC,HRHI ,DR,hj)
CALL BODE(.95.W0.GmP1(2).NPLPI.NPCLPC,NZLPZNZCL ,ZC.FR.FI.C)FA2
2)
A12A1I+ .1415927
A2zA20.3.14 15927
Wl=W0-.05.W@*A1/CA1 .A2)
IFASA-o.E.1.NDASW-I.T.)*@ GO 10 60

60 KF(N)z.5/SORT(HRoe*o2HI*2)
K~cGi4OKF(N)/PIC2)
KINFEGI*K0PI(2)
IF(N.NE.1) GO TO 65
GN=GMOI(F(1)
K6mG4
KINF=GI*KO*PI(2)
KP(I)m1.
WRITE (6,12)

65 WRITE(6*13) W@,KF(NlKODKINF
70 PF(1,N)zSRT(PR0*2*PI*2)*KF(N)

NO6
RETURN
END
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SUBROUT9NE Pl-ANT(Pr#HvNAPS)
C ROUTINE GENEAATFS NORMALIZED PLANT VALUES PF FOR EEAS NICPOLS
C CHART BOUND ITERATION-

REAL IFoK0,KINF
DIMENSION PF(2o50),t,(10) PPO(10)DPI(10),Z(10),Zn(2,10).PC(2,12)
DIMENSION KF(50)

I FOAMATC I3,7X,7E10,41C8E10.4/))
2 FORMAT(1IIIOXGPLANT PARAMETER VALUES USED TO DETERMINE NIC).OLS C
2HART ROUNDSO/)
3 FORMAT(14 ,l0X~lsPOlra.6Fl0.4/(lW _.j7v.ArilAA~l
4 FORMlAT(412)
5 FORMAT(jHo, I0X,*Wro=e,F10.4,* Ao/M 0 :.,F1 0 .4)
6 FORMAT(lH@,IOX,OCOMPENSATION PARAMETERS*/)
7 FORMATW810.4)
8 FORMAT(IN0 1ox,.-REAL POLES*./(1M IO.XF-1o.4,))
9-FORMAT~j1Nj,lRX,*RrAI- ZEROS*./(IH ,IOX,Fj.4,))

10 FORMAT(lH091OX,o(COMPLEX POLES(ZETA,OMEGA)*,/(IH .1OX.2F10.4,)
11 FORMAT(110010X.GCOMPLEX ZEROS(ZETA,OMEGA)0,/(IH .1(0X,2FlO.4#))
12 FORMAT(1IHg,12X, ARr(LF)4,3X, .MAG(LF)o,5X(, *PHI , 7) ,*KF.8, *K(e*

28XvKINFGI)
13 FORIAT(1H #IOX,5Fl7.4.E12.4)

IF(PS.EQ.1.) GO TO 5
GMvI,

C READ ANr WRITE PLANT PARAMETER VALUES-
WRXTE(6o2)
READ(5#1) NPI.(PO(j)),J:1,NP1)
WRITE(6.3) (PR(j).jml.NPl)

NP .2
NZ=0
NPCm0
NZCm0

C READ OSCILLATING FREQUENCY WO AND A0/M0.
READ(5,7) bWDAO
wRITE(6.5 W,AO

c READ AND WRITE COMPENSATION DATA.
READ(5,4) KPLNZLPNPCLPNZCL
WRITE(6o6)
IF(NPL.EQ.KP) GO TO 20
10=NP,1

DO 15 1=I0,NPL
15 GI=GIOPl(I)

WRITE(6,8) (P1(I), I=I0,NPL)
20 1P(NZL.EQ.N7) GO TO 30

10=NZ,1
READ(5D7) C( I), IuT(,NZL)
DO 25 IzI0,NZL

25 GI=GI/Z(f)

30 IF(NPCL.EO.NPC) GO TO 40
10:NPC.1.

DO 35 1=10,NPCL
35 GI=GIOPC(2,1)002

WRITE(6,10) (PC(1.,TI,PC(2*1), ImI0sNPCL)
4o IF(NZCL.EO.NZC) GO TO 50

10=NZC~i
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READ(5,7)ZC. LC2I,:0NCL
DO 45i I:I0oMZCL

45 GR=GI/(ZC(2,1)**2)

BDO 70 J=I,Np1

Pt0)mP0Cj)

CALL BOEWI/lPPPPPPC ZZNCZRPBP(,))
IPF(NS.EQO) GO TO 701

C ON FIRST CALL SOLVE FOR PHI AND ADJUST GAIN SO

C LF(jWB):-.5*EXPIPHI)/(AB/MB- EXP(PHI)).

CALL BODE(W,GM/P1C?),NPL,P1,NPCLPC,NZLP7,N7C.7HRH ,DR,AL)

PH!0aPH41(AL.AO)
GL~c9/ 'SRT(AB*.22.O*COS(PHI0).1.)
KF(N)=GLO/SQRT04R**2.+!*02)
KB:GM*KF(N)/P1 (2)

KlNFzGIK0'vP1(2)
IF(N.NE.1) GO TO 69
GM: GM*K F (1)
KO=GM
KINFuGI*K0OPlC2)

WRITE(6,12)
65 PHI0ePHI@*ls0./3.1415927

AL=AL.180 ./3 .14159P'7
WRITE(6#13) AL.GLO.PHI~pKFtN) ,K@,KINF

70 PF(lpN):S0RT(PR**24ePI*
2 )*KFCN)

RETURN
END
FUNCTION PHI(AL,AB)

C FUNCTION SOLVES !O. 6.11 FOR PHI(RAD). GIVEN

C AL=ARG(Lm(JWO))(RAD) AND AO=AO/MO BY SECANT MFTHOD.
I FORMAT(lM 0 ,1 0X,OFUNCTION PHI FAILED TO CONVERGF Po.Z4.E12.4p
2* Plc*,E12.4.* F120,E12.4./)
PI=4.*ATAN(1. )
PO=1.5*(AL*PI)
Pici.5OAL+PI)
F8:P0-ATAN(SIN(PO)/(AC+COS(PO)))-AL-PI
DO 2 1:1,25
FI=P1-ATAN(SINCP1)/A0+COS(P1)))-AL-PI
PHI :Pj-FjOC (Pj-P 0) /(F1-F))
IF(ABSCF1) .LE. .01.ANDoARS(P1"PO)oLE. .01) RFTIJRN
FO=FI
Po=P1

2 P 1=PHI
WRITE(6#1) PO,P1.FI
STOP
END


